User's manual =

CONTENTS
PART 1

CHAPTER 1: AN INTRODUCTION TO THE BINARY NUMBER SYSTEM
1.1 BINARY NUMBERS
1.2 LOGICAL MANIPULATIONS
1.3 ARITHMETIC MANIPULATIONS
14 BINARY CODED DECIMAL (BCD) ARITHMETIC
CHAPTER 2: WELCOME TO THE MACHINE
2.1 HOW THE ACORN MICROPROCESSOR WORKS
22 THE MONITOR COMMANDS M, 1, {.
2.3 AT LAST, A PROGRAM,

2.3.1 ASSEMBLY LANGUAGE, MACHINE LANGUAGE, THE INSTRUCTIONS

LOAD, STORE and JUMP

2.32 ENTERING A PROGRAM, THE GO COMMAND

2.3.3 INSTRUCTIONS JMP, JSR

2.34 LOGIC INSTRUCTIONS ORA AND EOR.

235 ARITHMETIC OPERATIONS: ADC, SEC,CLC
CHAPTER 3: INSIDE THE 6502
3.1 THE ACCUMULATOR, PROGRAM COUNTER, STATUS REGISTER
3.2 THE STACK POINTER,
3.3 THE INTERNAL REGISTERS X & Y
34 MAKING OUR PROGRAM ‘FRIENDLY’
CHAPTER 4: THE REMAINDER OF THE INSTRUCTION SET
4.1 BRANCHES
42 INDEXING
43 INDIRECTION
44 READ —MODIFY —WRITE INSTRUCTIONS
45 MISCELLANEOUS REMAINING INSTRUCTIONS
CHAPTER 5: ACORN HARDWARE
5.1 CHIP LAYOUT AND BUS
5.2 RESET, INTERRUPT REQUEST AND NON-MASKABLE INTERRUPT
5.3 6502 INTERNAL ARCHITECTURE
54 PROMS, EPROMS, RAM, RAM 1/0
55 THE KEYBOARD AND TAPE INTERFACE
56 POWER SUPPLY
CHAPTER 6: FIRMWARE
6.1 THE TAPE STORE AND LOAD
6.2 THE BREAKPOINT AND RESTORE COMMAND
6.3 THE SINGLE STEPPING FACILITY
6.4 THE MONITOR LISTING
PART 2
APPLICATION PROGRAMS

APPENDICES
APPENDIX A: 64 CHARACTER ASC!I ON ACORN'S 7 SEGMENT
DISPLAY
APPENDIX B: INSTRUCTION SET
APPENDIX C: HEXADECIMAL TO DECIMAL CONVERSION TABLE
APPENDIX D: ACORN MONITOR ADDRESS INFORMATION
GLOSSARY

PART 1

CHAPTER 1: AN INTRODUCTION TO THE BINARY NUMBER SYSTEM
1.1 BINARY NUMBERS:

NUMBERS IN EVERY DAY USE ARE WRITTEN IN THE DECIMAL SYSTEM, T~
IS, TO THE NUMBER BASE 1@. A POSITIONAL NOTATION IS USED
REPRESENTING ONE “10@'s; TWO ‘1@'s & EIGHT ‘1's AS THE SYMBOL 128. T—=<
RIGHTMOST (i.e. LEAST SIGNIFICANT) DIGIT IS IN THE “UNITS” COLUMN, ~—<
2 IN THE “TENS” COLUMN, THE 1 IN THE “HUNDREDS’’ COLUMN, AND TH=
VALUE OF THE SYMBOL ‘128’ IS EVALUATED AS 1x10@0+2x1¢ + 8x1 = 128.
SIMILARLY “1024' IS EVALUATED AS 1x1000 + 0x 100 + 2x10 + 4x1 = 1024, W~ =~
IS MORE CONVENIENTLY WRITTEN AS 1x10° + 0x10% + 2x10! 4x1¢° = 1024,
USING THE MATHEMATICAL SHORTHAND FOR 1000 = 10x10x10 = 183, AND
THE CONVENTION “ANY NUMBER TO THE POWER ZERO IS 1" TO GIVE A
CONSISTENT METHOD OF EVALUATING SUCH SYMBOLS.

SO 1024

CAN BE WRITTEN IN COLUMNS

3 2 1 @

1) 2 4

AND EVALUATED AS 1x10% + Px10% + 2x10* + 4x1¢°

TO THE BASE 10.

TO THE BASE 8, 1824 WOULD MEAN 1x83 + gx82 + 2x8! + 4x8° WHICH IS THE
DECIMAL NUMBER 532.

TO THE BASE 16,1024 WOULD MEAN 1x16% + @x162 + 2x16! + 4x16% WHICH 1S
THE DECIMAL NUMBER 4132.

TO DISTINGUISH THE BASE TO WHICH A NUMBER ISWRITTEN WE'LL WRITE
ITS’ BASE AFTER IT AS A SUBSCRIPT: 1024, , AND NOW WE CAN WRITE

1024 = b32 .
1024, 6 = 4132,0|
10000000, = 128, 0
JUST AS BASE TEN HAS THE NAME ‘DECIMAL’, BASE SIXTEEN HAS THE NAME
‘HEXADECIMAL’, BASE EIGHT HAS THE NAME ‘OCTAL" AND BASE TWO
‘BINARY’. THESE FOUR BASES ARE IN COMMON USE WITH MODERN
COMPUTERS, ESPECIALLY HEXADECIMAL (HEX) AND BINARY. CONVERSION
BETWEEN BINARY, OCTAL & HEX NUMBERS IS VERY SIMPLE. SINCE THEY ARE
ALL POWERS OF TWO, NUMBERS JUST NEED DIVIDING UP.—
10000000, = 110001100001, = 80,

= 101011000 1000k =200,
— EACH HEX DIGIT IS FOUR BINARY DIGITS (BITS) & EACH OCTAL DIGIT IS

3 BITS.

OCTAL DIGITS ARE®,1,2,3,4,5,6,7.
HEX DIGITSARE®,1,2,3,4,5,6,7,8,9,A,8,C,D,E,F A._...F ARE USED
INSTEAD OF 10....15 TO ALLOW UNRESTRICTED USE OF THE POSITIONAL

SYSTEM.

T
m
x

WD DN —
SRS TTMUONOTP>POONOORWN -

100

CONVERSION TABLE
DECIMAL

-
SOONOCTOPPWN-—-

-
—_

[N
PR WN

100
128
256

OCTAL

NOOMMON—,a

10
11
12
13
14
15
16
17
20
40
100
144
200
400

BINARY
)

1

10

"

100

19

119

1M
1000
1001
1010
1011
1100
1101
110
1"Mn
10000
100000
1000000
1100100
10000000
100000000

THE ACORN MICROPROCESSOR IS DESIGNED TO DEAL WITH 8 BITS AT A TIME.
THE COLLECTION OF 8 BITS IS GIVEN THE SPECIAL NAME 'BYTE’, AND IS

NORMALLYWRITTEN INHEXADECIMAL OR BINARY. ABYTE THUS IS @....FF 4
@...11111111, OR @....2565; . THE MICROPROCESSOR CAN CARRY OUT LOGICAL
AND ARITHMETICAL MANIPULATIONS ON BYTES.

1.2 LOGICAL MANIPULATIONS
THE MICROPROCESSOR CAN IMMEDIATELY CARRY QUT THE LOGICAL AND,
EXCLUSIVE - OR & OR FUNCTIONS ON ALL 8 BITS SIMULTANEOQUSLY, USING

THE FOLLOWING TRUTH TABLES FOR EACH BIT (SYMBOL ‘b’)

AND (A)

by

by

result

1)
0
1
1

@
1
)
1

?
)
]
1

EXAMPLE
OPERANDS

00111100

219119190 AND

(OPERATOR)

00011000 RESULT

EXCLUSIVE-OR(¥)

b, b, result
e[0|0
@1 1

1 () 1

1 1 U
00111100

21911010 E-OR

01100110

OR(V)

by

2

result

]
)
1
1

- =9

1]

1
1
1

Pe111100

21611910 OR

¢1111110

1.3 ARITHMETIC MANIPULATIONS

BINARY ADDITION b; | by | SUM | CARRY
WITH CARRY OUTPUT 1) [) '))
@ |1 1]
110 1)
1 1 ? 1

BINARY ADDITION WITH CARRY FROM RIGHT

by b, INPUT CARRY SUM OUTPUT CARRY TO LEFT

[} [) [) 1) ()

@ 1) 1]

1 1) @ 1)

1 1]] 1

) @ 1 1)

) 1 1] 1

1) 1 0 1

1 1 1 1 1
01011010+ BA; ¢ + 9810 +
10010110 96,6 150; o

IN ORDER TO MAKE LONGER ADDITIONS EASIER TO PROGRAM, THE
MICROPROCESSOR HAS A CARRY BIT (FLAG). AT THE START OF AN
ADDITION THIS IS TREATED AS THE INPUT CARRY, AND AT THE END IT
RECEIVES THE CARRY OUT FROM THE SUM AT BIT 7: ASSUMING WE HAVE A
CARRY INPUT:

11000011 C31s 195,
10100181 CARRY IN Ab, 16546
_.___El:-]"’ _he + Nyt
CARRY OUT 1101001 169, 361,

SUBSTRACTION OPERATES IN A SIMILAR MANNER, EXCEPT THAT THE
CARRY (OR BORROW) FLAG OPERATES UPSIDE DOWN: A @ CARRY FLAG IS
TREATED AS REPRESENTING A BORROW FROM THE PREVIOUS STAGE:

11111111 FFye 255, ¢
(0000000 09,6 000 o
9 Bis _Bo
11111110 1FE, 6 51010

NOT QUITE THE RESULTS ONE MIGHT HAVE WISHED FOR! (SUPERFICIALLY
THIS OCCURS BECAUSE OF THE HARDWARE IMPLEMENTATION OF
SUBTRACTION A SUBTRACTION, (P—Q}, IS REGARDED BY THE MICRO-
PROCESSOR AS THE EQUIVALENT (P+{—Q)), BECAUSE THERE IS A SIMPLE
WAY TO GENERATE THE NEGATIVE OF A NUMBER.

THE 'ONES-COMPLEMENT' OF A BINARY NUMBER IS SIMPLY GENERATED BY
EXCHANGING "@'s & “1's:

s 00001100, 0Cys 12,6

COMPLEMENT 11110011, F316 2434
IF THIS ONE'S-COMPLEMENT IS TO BE THE NEGATIVE OF A NUMBER,

WE SHOULD GET @ ON ADDITION:

3ee01100, @Ci6 1250

1111@@112 + F316 + 24310 +
1111111, FFie 255, 4
WHICH DOESN’T HAPPEN UNTIL WE ADD AN EXTRA 1:
30001100, PCy 6 1210
11110011, F3i6 24310
T, + _hie f _lio 16
1 00000000, 100, 6 2561 ¢

AND THEN TREAT THE OUTPUT CARRY AS INDICATING THE ABSENCE OF A
BORROW FROM THE HIGHER ORDERS.

THE NUMBER (ONE'S-COMPLEMENT + 1) IS CALLED THE TWO’S-COMPLEMENT
OF ANUMBER:

BINARY HEXADECIMAL DECIMAL
¢¢0®®®®12 @1 16 +1 10
00000000, 00, 6 +@y 6 or =0y ¢
11111111, FFie —110
111111102 FEi6 —210
11110100, Fd,6 —1240
10000000, 80; 6 12810
21111111, 7F 16 +12710

SO ABYTE CAN BE TREATED AS A 'SIGNED BINARY NUMBER’ IN THE RANGE
+127.....@..... =128, OR AS A BINARY NUMBER IN THE RANGE @.....+255. NOW
THE SUBTRACTION ABOVE SHOULD BE CLEAR : INTERNALLY, THE MICRO-
PROCESSOR ONE'S-COMPLEMENTS ONE OF THE NUMBERS AND THEN
EXECUTES A NORMAL ADDITON WITH CARRY.

1.4 BINARY CODED DECIMAL (BCD) ARITHMETIC
99,6 LOOKS VERY LIKE 99, THEY BEHAVE THE SAME WAY AS THEY ARE
MOVED AROUND AND UNDERGO LOGICAL OPERATIONS SINCE THEY ARE
WRITTEN THE SAME WAY. THE BINARY REPRESENTATION OF 99, WOULD
NORMALLY BE 011000811,, AND OF 99,4 IT WOULD BE 10211001,. WE NOW
DEFINE THE BINARY CODED DECIMAL VERSION OF 99;, AS BEING THE
BINARY REPRESENTATION OF THE DECIMAL DIGITS IN THE ORIGINAL
POSITIONAL NOTATION, MAKING THE DIFFERENCE BETWEEN THE BINARY
REPRESENTATIONS OF 99;¢ & 99,9 A MATTER OF SUPSCRIPTS:

9916 = 1@@11@®12

99,0 = 10011031 B.C.D.
THE B.C.D. AND BINARY NUMBERS DIFFER IN HANDLING ONLY IN
ARITHMETIC:

7916 7910
22, *+ BUT 22,0 +
9By 10156

THE MICROPROCESSOR CAN BE ‘“TOLD' WHICH TYPE OF ARITHMETIC TO
CARRY OUT, BY SETTING (PUTTING A ONE INTO) OR CLEARING (PUTTING A
ZERO INTO) AN INTERNAL BIT, THE ‘DECIMAL MODE' FLAG.

CHAPTER 2: WELCOME TO THE MACHINE

2.1 HOW ACORN’'S MICROPROCESSOR WORKS

TO CARRY OUT THE ABOVE OPERATIONS THE MICROPROCESSOR HAS AN
INTERNAL ARITHMETIC LOGIC UNIT (A.L.U.) WHOSE OUTPUT ISSENT TO AN
INTERNAL REGISTER OF ONE BYTE LENGTH CALLED THE ACCUMULATOR
‘A’, THIS REGISTER ALSO ACTS AS ONE OF THE OPERANDS; THE OTHER BEING
DRAWN FROM THE MEMORY EXTERNAL TO THE uPROCESSOR, WHICH IS CON-
NECTED TO THE pP BY 8 LINES CALLED THE DATABUS:

DATABUS

MEMORY A
M,

DATA CAN BE TRANSFERRED ALONG THE DATABUS IN EITHER DIRECTION,
THIS DIRECTION IS CHOSEN BY THE, uP AND INDICATED TO THE EXTERNAL
UNITS BY ASINGLE 'R’ LINE : WHEN HIGH, "1, THE uP IS RECEIVING DATA
FROM THE MEMORY, '‘READING'; WHEN LOW, ‘@', THE uP 1S SENDING DATA TO
THE MEMORY, ‘WRITING'. ALL INFORMATION USED BY THE uP TRAVELS
ALONG THE DATABUS, INCLUDING THE INSTRUCTIONS. SO THAT THE uP
KNOWS WHERE ITS INSTRUCTIONS ARE IT HAS A TWO BYTE (1644 BIT)
REGISTER CALLED THE PROGRAM COUNTER, ‘PC’, WHICH POINTS AT THE
INSTRUCTIONS BEING EXECUTED. THE MEMORY CAN BE VIEWED AS A BOOK
OF 256 PAGES, THE PARTICULAR PAGE BEING DECIDED BY THE MOST
SIGNIFICANT 8 BITS (BITS 15—-8) OF THE 16 BIT ADDRESS, EACH PAGE CON-
TAINING 2566 BYTES, THE PARTICULAR BYTE BEING DECIDED BY THE LEAST
SIGNIFICANT 8 BITS (BITS 7—@) OF THE 16 BIT ADDRESS.

A

— e -
16 BIT ADDRESS_ _ ¥ " | MEMORY | ~~< 5™~ ONE BYTE OF DATA

—— %

IN THE KIT, PAGES FE; ¢ & FF1 ARE OCCUPIED BY ANON-ERASEABLE PROGR AN
TO INTERFACE BETWEEN THE MICROPROCESSOR AND THE KEYBOARD &
DISPLAY UNIT.TOSTART THEuP INTHISPROGRAM (AT THE CORRECT PLACE
THERE IS A RESET BUTTON WHICH INITIALIZES THE PROGRAM COUNTER. i
PAGE 0@, ¢ THERE IS SOME ALTERABLE MEMORY, OF WHICH THE BOTTOM |7,
BYTES ARE GIVEN SPECIAL USES BY THE FE 4 & FF;4 MONITOR PROGRAN &7
UNLESS PRESSED FOR SPACE, IT'S BEST TO STAY OUT OF THEM.

2.2 THE MONITOR COMMANDS M,t,{
THE FIRST FEATURE OF THE MONITOR IS THE MEMORY INSPECT & MODIFY
CONTROL SWITCH ON, AND PRESS THE RESET BUTTON:

MODE ADDRESS DATA

] IV T

THEN PRESS THE MODIFY KEY, M. THIS GETS YOU INTO THE MEMORY
INSPECTION AND MODIFY MODE. THE MODE INDICATOR SHOWS 'A’ FOR
ALTER. THIS FIRST PHASE OF ‘A’ ALLOWS YOU TO CHOOSE ANY ADDRESS
IN MEMORY.

A. XXXX

APPEARS ON THE DISPLAY, WHERE X REPRESENTS
ANY OF THE 16 HEX CARACTERS SIGNIFYING THE ADDRESS,NOW PRESS THE
KEYSF,E, 0,0 (IF YOU MAKE A MISTAKE, E.G. PRESSED F, D, JUST START
OFF FROM THE F AGAIN). AS EACH KEY IS PRESSED THE INFORMATION
ON THE DISPLAY SHIFTS TO THE LEFT:

A. 'XXXF
A. XXFE'
A. XFE®
A. FEOO

AND SO YOU END UPWITH FE@® ON THE DISPLAY. PRESS ANY OF THE EIGHT
COMMAND KEYS (IT DOES NOT MATTER WHICH) AND YOU CAN INSPECT THE
CONTENTS OF THIS MEMORY ADDRESS. THIS IS PHASE TWO OF MODE "A" AND
ALLOWS YOU TO INSPECT AND ALTER THE DATA OF THE MEMORY ADDRESS
CHOSEN IN PHASE ONE.

A. FEOO . A0
THIS IS THE INFORMATION STORED AT THE VERY BEGINNING OF THE
MONITOR. IF YOU PRESS THE 1 KEY

A. FEO1 . 66
UP WE GO. NATURALLY THE | KEY BRINGS BACK

A. FEOO . A0

AND EITHER KEY MAY BE USED ANY NUMBER OF TIMES IN SUCCESSION, NOW,
IF, WITHOUT TURNING OFF, YOU PRESS RESET

AND THEN M
A. FEQO

THE SYSTEM HAS REMEMBERED THE ADDRESS YOU WERE USING {WHICH
DOESN'T HAVE TO BE FE@®) TO INSPECT MEMORY NOW ENTER THE ADDRESS
0030 AND TERMINATE WITH ANY COMMAND KEY

A. 0030 . XX

030 1S AN ADDRESS IN THE ALTERABLE SECTION OF THE MEMORY.
PRESSING DIGIT KEYS NOW WiLL CAUSE THE INFORMATION [N @930 TO
CHANGE (WHAT HAPPENS AT FE@®?? TRY IT! YOU CANNOT WRITE INTO THE
MONITOR PROM, (i.e. THE PROGRAMMABLE READ ONLY MEMORY). PRESS @, 1.

A, 0030 . 01

PRESS 2,3
A. 0030 . 23

AS BEFORE INFORMATION {SSHIFTED IN UNTIL TERMINATED BY ANY
COMMAND KEY. BUT, UNLIKE THE ADDRESS FETCHING PHASE, THE COMMAND
KEY WILL BE EXECUTED. USEFUL TERMINATORS ARE THE M, * & { KEYS.
PRESS 1.

A. 0031 . XX
PRESS 4,5

A. 0631 . 45
PRESS {

A. 0030 . 23
&t AGAIN

A 0031 . 45

YOU CAN GO UP AND DOWN INSPECTING & MODIFYING THE MEMORY
CONTENTS IF THERE IS NO ALTERABLE MEMORY (E.G. APROM) AT A
PARTICULAR ADDRESS, THE INFORMATION WILL NOT CHANGE. TO CLOSE
THIS SECTION WE'LL MAKE THE MONITOR DO A LITTLE TRICK. M,000.E, «
(k =ANY COMMAND KEY)

PRESS 1,6. (IF YOU GET BORED, YOU CAN GO THE OTHER WAY BY 1,7)
(ESCAPE BY RESET). THE MONITOR SCANS THROUGH ALL MEMORY
SUCCESSIVELY SHOWING ITS CONTENTS (DATA). WHERE THERE IS NO
MEMORY AT ALL YOU WILL PROBABLY SEE THE FIRST TWO ADDRESS
DIGITS.

2,3 AT LAST, APROGRAM
2.3.1 ASSEMBLY LANGUAGE, MACHINE LANGUAGE, THE INSTRUCTIONS
LOAD, STORE AND JUMP

A PROGRAM IS THE NAME FOR A SET OF STORED COMMANDS THAT THE
MICROPROCESSOR WILL EXECUTE. THESE ARE STORED IN BINARY, SINCE
THAT'S ALL THAT ANYTHING CAN BE STORED IN, (ENTERED BY YOU IN HEX)
AND ARE INDISTINGUISHABLE FROM ANYTHING ELSE. IF IT GETS THE
CHANCE THE uP (MICROPROCESSOR) WILL BUSY ITSELF TREATING
INFORMATION WHICH YOU MEANT AS DATA AS A PROGRAM. IT PROBABLY
WON'T BE DOING ANYTHING INTELLIGENT AND WILL HAVE TO BE
SUMMONED BACK WITH THE RESET KEY. SOME SORT OF TRANSLATION
BETWEEN THE STORED BINARY/HEX AND YOU IS NEEDED. 18101101, MEANS
A GREAT DEAL TO THE uP BUT LITTLE TO YOU. IT ACTUALLY MEANS “LOAD
THE ACCUMULATOR WITH THE CONTENTS OF THE MEMORY ADDRESS
DEFINED BY THE FOLLOWING TWO BYTES, OF WHICH THE FIRST IS THE
LEAST SIGNIFICANT ADDRESS™. THIS IS A LITTLE LONG FOR WRITING
STRAIGHT INTO A PROGRAM AND IS USUALLY ABBREVIATED TO LDA ABS,
OR JUST LDA.ABSOLUTE MEANS ANYWHERE IN THE 64K. THE 6502 CAN
ADDRESS 64K OF MEMORY WHICH IS DIVIDED INTO PAGES 256 BYTES LONG
THE FIRST PAGE IS CALLED ZERO PAGE. LOCATIONS IN ZERO PAGE CAN
BE ADDRESSED BY JUST ONE BYTE. THERE ARE SPECIAL INSTRUCTIONS TO
DO THIS. AT THE END OF THE MANUAL THERE IS A LIST OF ALL THESE
MNEMONICS WITH THEIR HEX EQUIVALENTS IN APPENDIX B. SO IF WE WROTE
THE PROGRAM IN MNEMOMICS IT WOULD LOOK LIKE,

LDA FE 00
AND WE WOULD TRANSLATE IT FOR THE uP AS THE THREE BYTES

AD LOAD ABSOLUTE

0o LOWER BYTE OF ADDRESS

FE HIGH BYTE OF ADDRESS
WHICH WOULD CAUSE THE uP TO PUT A@ (THE DATA STORED IN FE@®) IN ITS
ACCUMULATOR (REMEMBER USING THE MONITOR TO LOOK AT FE@@?). THE
TRANSLATION PROCESS IS CALLED ASSEMBLING AND COMPUTER PROGRAMS
WHICH DO IT ARE CALLED ASSEMBLERS. A RESIDENT ASSEMBLER IS ONE
THAT RUNS (OPERATES) ON THE SAME MACHINE THAT IT ASSEMBLES FOR;
A CROSS ASSEMBLER RUNS ON A DIFFERENT MACHINE. THE MNEMONICS
LDA, STA etc ARE OFTEN CALLED ASSEMBLY LANGUAGE, THE GENERATED
BINARY IS CALLED MACH{NE CODE.
WE CAN LOAD THE ACCUMULATOR IN TEN OTHER WAYS; HERE ARE TWO OF
THEM.

INSTRUCTION

LENGTH
IN EXECUTION
BYTES TYPE HEX MNEMONIC TIMEuS BRIEF EXPLANATION
2 1 A9 LDA # 2 PUT THE NEXT BYTE IN
ACCUMULATOR. “LOAD
IMMEDIATE".
2 2 Ab LDA Z 3 SHORTENED FORM OF
LOAD ABS 00XX ‘LOAD
ZERO PAGE".
3 3 AD LDA 4 LOAD A ABSOLUTE.

THE FIRST OF THESE INSTRUCTIONS IS VERY IMPORTANT. IFWE KNOW THAT
WE WANT AQ@ IN THE ACCUMULATOR THEN IT ISWASTEFUL TO FIND A
MEMORY LOCATION WHICH HAPPENS TO CONTAIN IT, SINCE TWO BYTES ARE
NEEDED (GENERALLY) TO SPECIFY WHERE IT IS AND SO WE IMPLY, BY THE
IMMEDIATE INSTRUCTION, WHERE IT IS & ACTUALLY ENTER IT IN THE
PROGRAM. THERE ARE COMPLEMENTARY STORE ACCUMULATOR 'STA'
INSTRUCTIONS TO LDA ZAND LDA.

BYTES TYPE HEX MNEMONIC TIME uS

2 2 85 STAZ 2 STORE A ZERO PAGE
(IN THE FIRST 256 BYTES)
3 3 8D STA 3 STORE A ABSOLUTE

(ANYWHERE IN MEMORY)
WE CAN ALSO LOAD THE PROGRAM COUNTER. THE PROGRAM COUNTER IS AN
INTERNAL REGISTER THAT POINTS TO THE NEXT LINE OF THE PROGRAM.
THE MNEMONIC FOR THIS IS NOT LDPC BECAUSE WHEN THE P.C. IS LOADED
WITH A NEW VALUE IT GIVES THE MICROPROCESSOR A DIFFERENT PLACE TO
LOOK FOR INSTRUCTIONS: THE PROGRAM JUMPS. SO ‘LOAD P.C. WITH NEXT
TWO BYTES' (LDPC) ISJMP, THIS IS REFERRED TO AS JUMP ABSOLUTE
SINCE THE PROGRAM JUMPS TO A NEW ABSOLUTE ADDRESS. SO IF WE ARE
NOT IN THE MONITOR ANDWANT TOBE,JMP FF@4WILL ENTER THE MONITOR.
NOW WHAT HAPPENS IF THE FOLLOWING PROGRAM IS RUN?

LDA FEQQ
STA Z 2¢
JMP FF@4

THE FIRST INSTRUCTION GETS THE CONTENTS OF FE®®, AND PUTS IT IN THE
ACCUMULATOR. THE SECOND STORES THE ACCUMULATOR IN LOCATION
P920 THE FIRST TWO @¢'S REFER TO ZERO PAGE AND ARE ASSUMED BY THE
PROCESSOR IN THE ZERO PAGE MODE. THE THIRD GETS BACK TO THE
MONITOR, SO THAT YOU CAN INSPECT LOCATION 2@. THIS READS AS.

Ge30 AD (OPCODE) LDA FEQQ
0031 00 (DATA)

0032 FE (DATA)

P33 85 (OPCODE) STAZ20
0034 20 (DATA)

0035 4C (OPCODE) JMP FFo4

?036 @4 (DATA)
0037 FF (DATA)

THE ADDRESS @930 IS THE STARTING ADDRESS OF THE PROGRAM. THIS
PARTICULAR PROGRAM WILL WORK WITH ANY STARTING ADDRESS —IT IS
SAID TO BE ‘POSITION INDEPENDENT’ OR 'RELOCATABLE’ — BUT OTHER
PROGRAMS MAY NOT. IF YOU ARE NEW TO THE GAME, IT WILL BE EASIER IF
YOU ENTER PROGRAMS AT THE STARTING ADDRESS SHOWN IN THE MANUAL

2.3.2 ENTERING A PROGRAM, THE GO COMMAND

TO ENTER THIS PROGRAM, WE'LL GO THROUGH IT STEP BY STEP.

| ENTER THE STARTING ADDRESS: PRESS M,0.0,3,0, k

Il ENTER ABYTE OF DATA AD

It USE THE T KEY TO TERMINATE DATA ENTRY AND STEP UP
— CONTINUEWITH0,0,1,F.E*8512014C1t 041 FF

IV CHECK THAT THE PROGRAM IS ENTERED CORRECTLY BY, E.G, USING {
TO GO BACK DOWN THROUGH IT.
— REMEMBER THAT MISTAKES AT KEY ENTRY (E.G. PRESSED 8,6) MAY BE
CORRECTED BY CONTINUING (PRESS 8,5) —

NOW THAT THE PROGRAM IS LOADED PRESS ONLY ONCE THE ‘GO’ (G) KEY

K XXXX

APPEARS THE K { R.) REMINDS YOU OF TWO THINGS: L THIS IS A DIFFERENT
STORED ADDRESS TO THE A. ADDRESS. Ll YOU CAN'T GO BACK! (UNLESS
YOU EITHER PRESS RESET OR ENTER ADDRESS FF@4, THE MONITOR ENTRY
ADDRESS, AND GO) THE NEXT COMMAND KEY YOU PRESS WILL CAUSE THE
uP TO DO A KAMI-KAZE DIVE TO THE ADDRESS SHOWN, SO ITSASWELL TO
GET IT RIGHT!! ENTER 0,0,3,0

K. 0030

AND PRESS ANY COMMAND KEY. NOTHING HAPPENED? WELL IT DID, REALLY.
IT JUST HAPPENED VERY QUICKLY:

PROGRAM EXECUTION TIMES, uS
LDA FEQQ 4
STA 2 20 3
JMP FFo4 3

TOTAL 1010 uS
IT TOOK TEN MILLIONTHS OF A SECOND TO HAPPEN. WE'RE NOW BACK IN
THE MONITOR. PRESSING ANY DIGIT KEY WILL CAUSE THE {BY NOW)
FAMILIAR DOTS TO REAPPEAR. PRESSM,0020 K

A. 0620 . AQ

WHICH CHECKS THAT THE PROGRAM ACTUALLY DID WORK. YOU COULD
CHANGE 0020 AND RUN THE PROGRAM AGAIN BY THE KEYS

F,F,G,G,M,M
WHICH SUCCESSIVELY PUT FF IN ¢@20, RUN THE PROGRAM AND RE-EXAMINE

LOCATION 9029. A LOT QUICKER FOR YOU THE SECOND TIME, WASN'T iT?
THIS IS BECAUSE M & G REMEMBER WHAT THEY WERE POINTING AT. LET'S
MAKE THE PROGRAM BETTER. AT THE MOMENT WE HAVE NO IDEA IF IT RAN,
AND WE DON'T KNOW IF IT RAN CORRECTLY UNTIL WE LOOK AT ¢@29. IF THE
PROGRAM WROTE OUT THE BYTE ON THE DISPLAY ASWELL AS STORING T
IN 0028, WE'D KNOW THAT IT HAD ALL HAPPENED. INSIDE THE ACORN
MONITOR PROGRAM IS A SET OF INSTRUCTIONS TO WRITE A BYTE ONTO THE
TWO RIGHT HAND DISPLAY DIGITS. THIS PROGRAM IS LOCATED AT FE6@ AND
EXPECTS THE BYTE TO BE DISPLAYED TO BE IN THE ACCUMULATOR, WHICH
ITIS. THE PROGRAM DESTROYS THIS BYTE AS IT PUTS IT ONTO THE DISPLAY
SO WE MUST PUT IT IN @20 BEFORE USING THE PROGRAM.

2.3.3 INSTRUCTIONS JMP, JSR

{F WE SIMPLY WENT JMP FEG@ THISWOULD CORRECTLY EXECUTE THE
PROGRAM BUT WE WOULD BE LEFT {N THE MIDDLE OF THE MONITOR SOME-
WHERE SINCE THE PROGRAM DOES NOT HAVE AN ADDRESS TO JUMP BACK
TO. WE CAN GIVE IT SUCH AN ADDRESS WITH THE INSTRUCTION JSR (OPCODE
20 HEX) THIS IS EXACTLY LIKE A JUMP BUT IT SAVES THE PROGRAM
COUNTER BEFORE JUMPING. THEN THE SINGLE BYTE INSTRUCTION RTS
{OPCODE 6@ HEX) RESTORES THE PROGRAM COUNTER AND WE GET BACK
AGAIN. JSR 1S ““JUMP TO SUBROUTINE" AND RTS IS “RETURN FROM
SUBROUTINE”. THE PROGRAM AT FEB@ HAS AN RTS ATTACHED AT ITS END,
AND SO CAN TRANSFER CONTROL BACK TO THE PROGRAM WHICH CALLED IT.
OUR NEW PROGRAM IS 3BYTES LONGER:

0030 AD LDA FEQQ
o031 10]

0p32 FE

0033 85 STA 220
0034 20

0035 20 JSR FE60
0636 60

@e37 FE

0038 4cC JMP FFQ4
0039 04

PO3A FF

AND WE WILL HAVE TO ENTER 6 BYTES FROM 0035 TO $03A WITH
M@0035 k,2816D1tFETACTBATFF.WEHAVENT CHANGED THE START
OF THE PROGRAM SO G, GWILL RUN IT.

K. 0030 . A@
APPEARS MEANING THAT 0020 HAS AGAIN HAD AQWRITTEN INTO IT.

INSTEAD OF STORING THINGS IN 0@2@, LET'S USE ITS INFORMATION AS PART
OF A LOGICAL OPERATION.

2.3.4 THE LOGIC INSTRUCTIONS ‘ORA’, ‘AND’, ‘EOR’.
IF WE PUT 6@, ¢ IN LOCATION 0020 (M,0,0,2,0, k, 6,8 : YOU SHOULD KNOW BY
NOW) AND ALTER THE STA Z INSTRUCTION AT 9033 TO, SAY, ORA Z {OPCODE

@5 HEX) (THE PROGRAM READS LDA FEQ®
ORA 220
JSR FEGQ
JMP FF@4)

WE HAVE A PROGRAM THAT DISPLAYS THE LOGICAL ‘OR’ BETWEEN THE
CONTENTS OF FEQ@® (AQ) AND 0920, (6@). THE HEX FOR ORA Z IS@56 AND IT
CARRIES OUT A LOGICAL ‘OR’' BETWEEN THE ACCUMULATOR AND THE
SPECIFIED LOCATION IN Z PAGE. M,0,0,33, k 95 ISTHE MODIFICATION
TO THE PROGRAM, THEN SINCE WE STILL START AT 0030, G,G RUNS IT :

K. 0030 . EO
THE OPERATION WAS ‘OR" : A 10100000
60 or 01100000 or
EQ 11100000

TRY CHANGING 002¢ TO 49 AND RUNNING THE PROGRAM AGAIN IS THE
ANSWER WHAT YOU EXPECTED?

WE CAN CHANGE 9033 TO MAKE THE PROGRAM DO LOGICAL ‘AND’ OR
‘EXCLUSIVE — OR’. THE MNEMONICS AND OPCODES ARE:

AND Z 25,6 LOGICAL AND ACCUMULATOR AND Z PAGE
MEMORY
EOR Z 456 LOGICAL EXCLUSIVE—-OR ACCUMULATOR AND

Z PAGE MEMORY
AND THE PROGRAMS WOULD READ

LDA FE@S & LDA FEGQ
AND Z 20 EOR Z 20
JSR FE60 JSR FE60
IMP FF@4 IMP FFQ4

BY NOW YOU MUST BE GETTING TIRED OF THE A@ IN FE@® SO WE'LL CHANGE
THE PROGRAM TO READ

LDA Z21

EOR Z 20

JSR FE60

JMP FF4
THE SPACE TAKEN UP BY LDA Z 21 IS ONE BYTE LESS THAN THAT USED BY
LDA FE@P. WE COULD SIMPLY WRITE THE NEW TWO BYTES IN AT LOCATIONS
@031 & G032 AND CHANGE THE GO ADDRESS TO @@31. THIS IS VERY SIMPLE
HERE SINCE THAT IS ALL WE HAVE TO DO. BUT IF THERE WERE MANY
REFERENCES TO @838 AS THE START OF THIS PROGRAM IT WOULD TAKE A
LONG TIME TO FIND AND CHANGE THEM ALL, AND IF WE DIDN'T CHANGE
THEM ALL SOMETHING WOULD GO WRONG. WE CAN'T MOVE THE REST OF
THE PROGRAM DOWN ONE BYTE: SOMETHING MIGHT BE REFERRING TO IT.
THE PROBLEM ARISES BECAUSE LDA Z IS SHORTER THAN LDA. WE COULD
SIMPLY USE LDA WITH A ZERO PAGE ADDRESS BUT THIS TAKES A WHOLE uS

LONGER THAN LDA Z! THE SOLUTION IS TO USE LDA Z AND TO INCORPORATE
AN EXTRA BYTE IN @030 AS PADDING. THIS MUST BE A SINGLE-BYTE
INSTRUCTION, THAT DOES NOTHING TO AFFECT THE PROGRAM, AND ONE IS
SPECIFICALLY PROVIDED

NOP EA ““NO OPERATION"
THE PROGRAM READS
@060 EA NOP
@031 Ab 21 LDA Z21
033 45 20 EOR Z 29
03526 60 FE JSR FE60
0038 4C P4 FF JMP FF@4

—NOTICE THE MORE COMPACT MODE OF WRITING IT DOWN. THIS IS MORE
CONSISTENT WITH THE WAY MNEMONICS ARE WRITTEN. IT IS EXACTLY
EQUIVALENT TO

0030 EA NOP
@031 A5 LDA Z 21
@32 21

0@33 45 EOR Z20
0034 20

@035 20 JSR FE6®
@036 60

P037 FE

(@38 4C JMP FFQ4
0039 04

PO3A FF

AND IT WILL BE USED THROUGHOUT THE REST OF THE MANUAL.:

THIS PROGRAM TAKES THE CONTENTS OF (WHICH MAY BE WRITTEN BY
PUTTING BRACKETS AROUND THE PARTICULAR ADDRESS) ¢@20 & 3021 AND
PRESENTS THEIR LOGICAL EXCLUSIVE — OR ON THE DISPLAY. APART FROM
THEIR LOGICAL FUNCTIONS, THESE OPERATORS ARE OFTEN USED TO
MANIPULATE SINGLE BITS. FOR INSTANCE ORA # @1 WOULD SET BIT @ OF THE
ACCUMULATOR, AND # FE WOULD CLEAR IT AND EOR # @1 WOULD COMPLENT
IT, ALLWITHOUT AFFECTING ANY OTHER BITS IN THE ACCUMULATOR.

2.3.5 ARITHMETIC INSTRUCTIONS ‘ADC’, ‘SEC’, ‘CLC".

FROM LOGIC OPERATIONS WE PROGRESS AGAIN TO ARITHMETIC. LOOKING
AT ORA Z,EOR Z, AND Z WOULD LEAD ONE TO ASSUME THE EXISTENCE OF
ADD Z.WELL, THERE ISN'T ONE, THERE'S ONLY ADC Z.

BYTES:2 ADCZ 65 “ADD WITH CARRY, ZERO PAGE"
1 SEC 38 “SET CARRY FLAG"
1 CLC 18 “CLEAR CARRY FLAG"

THIS IS MOST UNUSUAL AND A TRAP FOR UNWARY PROGRAMMERS,
ESPECIALLY THOSE USED TO uPs WHICH POSSESS AN ADD INSTRUCTION: THE
CARRY FLAG MUST BE CLEARED BEFORE AN ADC (OR IT MUST BE IN A
KNOWN STATE E.G. SEC = { CLC
ADC # 00 ADC #@1 OR
‘'UNEXPECTED’ ANSWERS WILL APPEAR. WHEN THE uP LEAVES THE MONITOR
USING THE GO ROUTINE THE CARRY FLAG ISSET: FAILURE TO CLEAR IT
BEFORE AN ADC RESULTS IN AN ANSWER 1 GREATER THAN EXPECTED.

ANOTHER TRAP FOR THOSE USED TO DIFFERENT uPs [S THE DECIMAL FLAG.
INSTEAD OF ASINGLE "DECIMAL ADJUST" INSTRUCTION TO ADJUST THE
RESULT OF BINARY ARITHMETIC ON B.C.D. NUMBERS TO B.C.D. THERE ARE
TWO INSTRUCTIONS
BYTES: 1 SED F8 “SET DECIMAL MODE"

1 CLD D8 “CLEAR DECIMAL MODE"
WHICH INSTRUCT THE PROCESSOR TO DO AUTOMATICALLY (OR NOT DO) THE
ADJUSTMENT AFTER ARITHMETIC OPERATIONS. THIS RESULTS IN SHORTER,
FASTER PROGRAMS FOR HANDLING B.C.D. ARITHMETIC WHICH, MERELY
BY CHANGING THE DECIMAL MODE FLAG, WILL HANDLE BINARY ARITHMETIC
IN ORDER TO FULLY UTILISE THE uP's POWER THE MONITOR SUBROUTINES
FOR FETCHING KEYS & OUTPUTTING DATA TO THE DISPLAY HAVE BEEN
WRITTEN WITHOUT ARITHMETIC SO THEY MAY BE CALLED WITH THE
DECIMAL FLAG SET OR CLEARED & THEY WILL NOT AFFECT IT.
SO LET'S DO A DECIMAL ADDITION;

Pa2F F8 SED
@30 18 CLC
@1 Ab 21 LDA Z21
@@33 65 20 ADC 2 2¢
(@35 20 60 FE JSR FE60
@38 4CP4 FF JMP FFQ4

OUR STANDARD PROGRAM HAS BEEN EXTENDED BACKWARDS BY ONE BYTE,
THE SED INSTRUCTION. THIS SHOULD BE INCLUDED (BY ,0,0,2,F ,4)

THE FIRST TIME THE PROGRAM IS RUN, BUT MAY BE OMMITTED (K,0,8,3.8.4)
ON SUBSEQUENT RUNS. THIS LITTLE PROGRAM WILL TELL US THAT

22+ 11 =33, ITWILL SAY THAT 35+ 26 = 61 AND THAT 50 + 51 = 31 WHOOPS!
THE PROGRAM AT FEG@ ONLY DEALS WITH PUTTING THE BYTE IN THE
ACCUMULATOR ON THE DISPLAY. IT PAYS NO ATTENTION TO THE CARRY
FLAG, INDEED IT CHANGES THE STATE OF THE CARRY FLAG ITSELF, SO
THAT WE CAN'T IMMEDIATELY CALL FE6@, HAVE IT WRITE ON THE DISPLAY
& RETURN THEN WRITE OUT THE STATE OF THE CARRY SOMEHOW,WHAT WE
NEED IS:

I SAVE THE CARRY FLAG

Il USE FE6Q

IHGET THE CARRY FLAG BACK & WRITE IT OUT SOMEHOW

A FRENZIED SEARCH THROUGH THE MNEMONICS REVEALS THAT THERE ARE
NO MNEMONICS LIKE LDC (LOAD C) OR STC {STORE C)

A CLOSER LOOK AT THE MICROPROCESSOR IS REQUIRED.

CHAPTER 3: INSIDE THE 6502
SO FAR THE PROCESSOR'S INTERNAL WORKINGS ARE

3.1 THE ACCUMULATOR, PROGRAM COUNTER, STATUS REGISTER

7 ® BIT NUMBER
ACCUMULATOR

15 0

| PC] PROGRAM COUNTER

CARRY FLAG

Ech DECIMAL MODE FLAG

THE CARRY & DECIMAL MODE FLAGS HAVE BEEN TREATED SEPARATELY TO
DATE. THEY ARE ACTUALLY MEMBERS OF A SPECIAL REGISTER CALLED THE

PROCESSOR STATUS REGISTER,P.

[—— INTERRUPT DISABLE
ZERO (THIS FLAG 1 WHEN
7 I 0 SOMETHING HAS BECOME ()

piIn[v| [8|po|ilz]cl—carry
l L DECIMALFLAG
, BREAK COMMAND EXECUTED

OVERFLOW
NEGATIVE

CAN WE, THEN, USE LDP & STP? NO, THEY DON'T EXIST EITHER.(FUME). IN
ORDER TO SOLVE THIS PROBLEM WE MUST INTRODUCE THE STACK.

DID YOU WONDER JUST WHAT HAPPENED TO PC DURING A JSR? YOU WERE
TOLD THAT IT WAS ‘SAVED’. WHERE? HOW? IT WOULD BE TERRIBLE TO HAVE
TO SPECIFY WHERE IT HAD TO BE STORED. WHAT'S NEEDED IS SOME PLACE
WHERE IT CAN BE PUT DOWN AND PICKED UP AGAIN. IT WOULD BE GOOD TO

ALLOW NESTED SUBROUTINES:

MAIN PROGRAM

JSR ALBERT -— ALBERT PROGRAM

JSR ALGERNON —_— ALGERNON PROGRAM

WE CAN'T JUST SAY THAT PC IS TO BE SAVED IN LOCATION, SAY, L & M —WE
WOULDN'T GET BACK FROM ALBERT SINCE THE CALL TO ALGERNON WOULD
HAVE DESTROYED THE NECESSARY INFORMATION IN L & M. {(IT ISWORTH
NOTING HERE THAT L & M COULD BE “CALLED"” —2 “CALLED'" —1. THEN A
CALL TO ALBERT AS A SUBROUTINE WOULD STORE THE RETURN ADDRESS
JUST BEFORE THE START OF ALBERT ALLOWING NESTED SUBROUTINES AS
ABOVE. A PROBLEM IS THAT THIS DOES NOT WORK WITH READ ONLY
MEMORY, LIKE THE MONITOR).

3.2 THE STACK POINTER

WE NEED SOMETHING WHICH WiLL DECIDE WHAT L & MARE TO BE,
DEPENDING ON WHICH SUBROUTINE WE ARE IN AN OBVIOUS CHOICE ISTO
USE AN ARRAY OF MEMORY LOCATIONS, AND A VARIABLE WHICH POINTS TO
THE CURRENT LOCATION OF L & M EACH TIME WE DO A JSR WE STEP UP THE
POINTER & EACH TIME WE DO AN RTS WE STEP IT DOWN.

N

w

RETURN ADDRESSy’
POINTER 2

WITH ACORN WE'LL NEED TWO BYTES FOR EACH RETURN ADDRESS. THIS IS
NO TROUBLE, WE JUST INCREMENT & DECREMENT THE POINTER TWICE. THE
WHOLE PROCESS IS CARRIED OUT BY THE PROCESSOR AUTOMATICALLY ON
EACH JSR & RTS, THE POINTER IS CALLED THE STACK POINTER AND IS A
SPECIAL 8 BIT REGISTER INSIDE THE PROCESSOR. THE ARRAY {S USUALLY
CALLED A STACK SINCE IT CAN ALSO BE USED TO STORE THINGS OTHER
THAN RETURN ADDRESSES. THE ACTUAL STACK RUNS FROM @1FF DOWN TO
@100, AND IT STARTS AT THE TOP: AN EMPTY STACK HAS STACK POINTER

AT FF. ABYTE IS PUT ON THE STACK AND THE POINTER IS DECREMENTED TO
POINT AT THE NEXT LOCATION; THE POINTER IS INCREMENTED AND A BYTE
LOADED FROM THE STACK IN THE REVERSE OPERATION. NO CHECK 1S MADE
FOR THE @0 TO FF DECREMENT INDICATING AN OVERFLOWED STACK, SO
PROGRAMS THAT REQUIRE MORE THAN 256 BYTES OF STACK SPACE WILL
MYSTERIOUSLY FAIL. SINCE THIS IS 128 CONSECUTIVE JSR'S, THE PROBLEM
WON'T BE ENCOUNTERED VERY OFTEN. ..

NOW THE PROCESSOR STATUS REGISTER CAN BE PUSHED ONTO THE STACK:

PLP 28 “PULL P’

PHP 28 "“PUSH P”
AND SO WE MAY SAVE IT BEFORE A SUBROUTINE CALL AND RECOVER IT
AFTERWARDS

PHP

JSR.. ..

PLP
THE SEQUENCE OF STACK OPERATIONS IS

TOP

TOP PCH T0OP

s H{Tor| S
V V
P

l__
PCH

y PCL %
1

PC

PHP JSR PROGRAM OPERATES RTS PLP

SO WE HAVE NOW MANAGED TO SAVE THE CARRY FLAG, USE FE60, AND
REGAIN THE CARRY FLAG. WE WISH TOWRITE T OUT, SO IT WOULD HAVE
BEEN BETTER TOWRITE.

PHP

JSR FEGD

PLA PULL BYTE FROM STACK INTO A
SINCE THIS GIVES THE CARRY FLAG IN A, AS THE LEAST SIGNIFICANT BIT,
TO GET RID OF THE REST OF THE BITS OF THE RECOVERED STATUS

s HrcL] S P S }T0°P
| PC]

PCH

PCL

REGISTER, WE CAN SIMPLY AND # 31. NOW A CONTAINS @ OR 1 DEPENDING

ON THE CARRY FROM ORIGINAL SUM. OUR PROGRAM NOW IS

SED SET UP FOR DECIMAL ADD
CLC
LDA Z 21 DOIT
ADC Z 20
PHP SAVE CARRY
JSR FE60 WRITE OUT TWO DIGITS
ON DISPLAYS 6 & 7
PLA
AND # 01 A =0 (NO CARRY FROM SUM)

OR A =1 (CARRY FROM SUM)

NOW ALL WE NEED TO DO ISWRITE OUT THE ACCUMULATOR ON DISPLAY

NO.5. THE WAY WE WROTE OUT THE FIRST TWO DIGITS OF THE RESULT WAS
TO USE A MONITOR SUBROUTINE WHICH DID JUST THAT. YOU'VE PROBABLY

NOTICED THAT THE MONITOR ONLY PUTS A DOT ON DISPLAY & (THE 3RD

FROM THE RIGHT) AND SUSPECT THAT IT CAN'T PUT ANYTHING ELSE THERE.
THIS IS TRUE, BUT IT DOESN'T MEAN THAT THERE ISN'T A MONITOR SUB-
ROUTINE THAT CAN DO THE JOB. SUCH A SUBROUTINE LIVES AT FE7A.IT IS
DESIGNED TO PUT THE LOWEST FOUR BITS OF THE ACCUMULATOR ONTO
ANY OF THE DISPLAYS, AS A READABLE CHARACTER. THIS IS JUST WHAT WE
NEED — BUT HOW DO WE TELL THE SUBROUTINE WHICH DISPLAY TO USE?

3.3 THE INTERNAL REGISTERS X ANDY.
WELL, BACK TO THE uP. THIS ISWHAT IT LOOKS LIKE INSIDE

PROCESSOR STATUS

7 BIT NUMBER

[A] AccumuLATOR

L X | w_RecisTeR }INDEX

| v | Y-REGISTER [REGISTERS
15
[PC | ProGRAM COUNTER

[S | sTACK POINTER

TWO NEWCOMERS, YOU'LL NOTICE! X & Y ARE ‘INDEX REGISTERS’, THEY WILL
BE DEALT WITH MORE THOROUGHLY IN A FEW MORE PAGES, BUT WHAT
MATTERS NOW IS THE USE FE7A MAKES OF THEM:
I FE7A NEITHER CARES ABOUT, NOR CHANGES X
[l FE7A DOESN'T CHANGE Y, BUT THE DISPLAY IT PUTS AONTO IS
CONTROLLED BY Y THAT IS, THE LOWER 4 BITS OF A ARE TRANSFORMED
INTO THE CORRECT SEQUENCE OF BITS TO REPRESENT THEIR HEXADECIMAL
CHARACTER AS IT SHOULD APPEAR ON THE 7 SEGMENT DISPLAY. THEN THIS
IS STORED IN MEMORY TO AWAIT THE SUBROUTINE WHICH ACTUALLY PUTS
THINGS ON DISPLAY.
ALTHOUGH FE7A MAKES NO RESTRICTIONS ON THE SIZE OF Y, THE MONITOR
SUBROUTINE WHICH DISPLAYS THEM ONLY KNOWS ABOUT THE FIRST 8
(NUMBERED, OF COURSE, 9—7) OF THEM, IN LINE WITH THE ACTUAL DISPLAY
HARDWARE. DISPLAY @ 1S THE LEFTMOST, DISPLAY 7 IS THE RIGHTMOST.
TO KEEP THE MONITOR AS EFFICIENT AS POSSIBLE THE SUBROUTINE AT
FEB® USES FE7A. IT FOLLOWS THAT T MUST HAVE LOADED YWITH7 &6,
AND SINCE FE7A DOESN'T CHANGE Y, Y ISSTILL SET TO THE LAST USED OF
THESE WHICH IS 6. SO. INSTEAD OF USING

LDY #@5 A0 @5 “LOAD Y WITH THE NEXT BYTE" (@5 HERE)
WE CAN USE

DEY 88 "DECREMENT (IN HEXADECIMAL) Y BY

ONE™

TOSET Y TO 5, THUS SAVING A WHOLE BYTE! (BUT NO TIME, THE TWO
INSTRUCTIONS ARE EXECUTED IN THE SAME TIME, 2uS). THE COMPLETE
PROGRAM IS

P02F F8 SED

#030 18 CLC

0031521 ° LDA #21

0033 65 20 ADC Z 20

9035 08 PHP

0036 20 60 FE JSR FE60

0039 68 PLA

003A29 @1 AND # 01

Pp3C 88 DEY

003D 20 7A FE JSR FE7A

0040 4C 04 FF JMP FF@4

AND SO, AT LAST, WE FIND THE ANSWER TO50, ¢ + 50, ¢ IS

K. 002F 100

PERHAPS WE SHOULD HAVE CLEARED THE DISPLAY? OR MADE IT SHOW THE
NUMBERS TO BE ADDED TOGETHER? OR ACTUALLY FETCHED THE TWO
NUMBERS USING KEYBOARD AND DISPLAY LIKE THE MONITOR DOES? OR
SOME COMBINATION OF THESE?

3.4 MAKING OUR PROGRAM ‘FRIENDLY’

USING THE MONITOR SUBROUTINE AT FEB8 IT IS EASY TO DO THE THIRD
OPTION. FE88 IS THE ROUTINE WHICH FETCHES 4 DIGIT NUMBERS,
TERMINATED BY ANY COMMAND KEY, INTO THE TWO BYTES [N ZERO PAGE
X & X+ 1 [i.e. IF X CONTAINS 20, INTO 0020 (LOWBYTE = RH PAIR OF
NUMBERS) & 0921] JUST WHAT WE NEED!

002A F8 SED

002B A220 LDX# 20
092D 2088 FE JSR FE 88
0030 18 CLC

Po31 Ab 21 LDA Z 21
0933 65 20 ADC Z 20
935 08 PHP

036 2060 FE JSR FEGO
?039 68 PLA
PB3A 29Mm AND # @
@p3C 88 DEY
@@3D 207AFE JSR FE7A
o040 4C 04 FF JMP FF@4

ONCE AGAIN THE PROGRAM HAS BEEN EXTENDED BACKWARDS SINCE THE
GREATER PART OF IT HAS ALREADY BEEN ENTERED (UNLESS YOU'VE
SWITCHED OFF AND LOST IT ALL)

RUNNING THIS PROGRAME (G@,¢,2,A, k)PRODUCES

K. 5050 - (ON THE ASSUMPTION THAT 0020 & ¢@21 STiLL
CONTAIN THE 5@¢'S ADDED TOGETHER AS BEFORE)

YOU SHOULD ENTER THE TWO PAIRS OF NUMBERS YOU WISH ADDED
TOGETHER AS IF THEY FORMED AN ADDRESS. TERMINATING YOUR ENTRY
WITH k INSTANTLY PRODUCES THE RESULT

K. 5050 100

LOOKING BACK OVER THE PROGRAM, AND EXAMINING THE MONITOR
LISTING,WILLREVEAL THAT IT TOOK AD, ¢ (OR 173,,) BYTES OF CODE TO
ACHIEVE THIS. THE ACTUAL OPERATION USED 6 BYTES OF CODE (SED; CLC;
LDA Z; ADC Z) WHILE THE OTHER 167, ARE THERE 'MERELY’ TO DISPLAY
THE RESULT & FETCH THE INFORMATION NEATLY (THE CODE CALCULATIONS
DO NOT CONSIDER THE 16,9 BYTES OF CHARACTER FONT OR THE 11,4,
BYTES OF TEMPORARY STORAGE ALSO USED)

CHAPTER 4: THE REMAINDER OF THE INSTRUCTION SET
4.1 BRANCHES
THINKING ABOUT THE FE88 PROGRAM, YOU SHOULD REALIZE THAT IT DOES
SOMETHING OF THE FORM
FETCH NEXT KEY
1E KEY IS A COMMAND KEY THEN RETURN

THIS IS A CONDITIONAL TRANSFER OF CONTROL AND REPRESENTS SOME
NEW INSTRUCTIONS AND A DIFFERENT WAY OF CHANGING THE PROGRAM
COUNTER. AN OPERATION LIKE ADC DOES MORE THAN ADDING TWO BYTES
AND THE CARRY FLAG TOGETHER AND OUTPUTTING A CARRY.IT ALSO SETS
SOME OF THE OTHER FLAGS IN P:

THE ZFLAG ISSET IF THE RESULTING BYTE WAS ZERO

THE V FLAG IS SET IF THERE WAS A 2'S COMPLEMENT OVERFLOW

THE N FLAG ISSET IF THE RESULT WAS A NEGATIVE 2'S COMPLEMENT

NUMBER — 1.E. BECOMES BIT 7 OF THE RESULT.
THESE FLAGS ARE ABLE TO CAUSE CONDITIONAL TRANSFER BY USING
THE APPROPRIATE ONE OF THE EIGHT ‘BRANCH" INSTRUCTIONS. THE
MECHANISM EMPLOYED IS TO PERFORM A 2’'S COMPLEMENT ADD BETWEEN
THE PROGRAM COUNTER AND THE SECOND BYTE OF THE BRANCH
INSTRUCTION THUS PERMITTING THE TRANSFER TO BE —128...+127 BYTES
FROM THE NEXT INSTRUCTION. THIS IS CALLED 'RELATIVE ADDRESSING’
AND IS A POSITION INDEPENDENT METHOD OF TRANSFER, THE EIGHT
BRANCH INSTRUCTIONS ARE ASSOCIATED TWO TO EACHOF THEC, Z,V &
N FLAGS, ONE OF WHICH BRANCHES IF THE FLAG IS SET, THE OTHER
BRANCHES IF IT IS CLEAR.

TO CLARIFY THIS LET'S LOOK AT AN EXAMPLE:

*4 0 BCS @3 “BRANCH IF CARRY SET"
*49 SEC SET CARRY

*43 Cs @1

*15 EELC CLEAR CARRY

36 - L. ...

(THE ARROWS ARE PUT IN FOR CLARITY)

WE’LL NEED TO CONSIDER THIS PROGRAM BOTH WITH THE CARRY SET &
WITH IT CLEAR

| CARRY ISCLEAR

INSTRUCTION | DOES NOT TRANSFER CONTROL SO WE DO INSTRUCTION 11,
SEC,NOW INSTRUCTION It TRANSFERS CONTROL SINCE THE CARRY IS NOW
SET. @1 IS ADDED TO THE PC (= * +5) TO GIVE* + 6 AS THE ADDRESS OF THE
NEXT INSTRUCTION.

Il CARRY IS SET
INSTRUCTION t TRANSFERS CONTROL. @3 1S ADDED TO THEPC {(=*+2) TO
GIVE * +5 AS THE ADDRESS OF THE NEXT INSTRUCTION, INSTRUCTION 1V,
CLC.

SO IF THE CARRY WAS CLEAR IT ISSET; IF IT WAS SET IT IS CLEARED, SO THE

PROGRAM COMPLEMENTS THE CARRY (THERE ARE QUICKER METHODS,

INDEED IT CAN BE DONE WITH 3 INSTRUCTIONS IN 4 BYTES)

AND WE CAN GO BACKWARDS:

*4+0 BCS @3¥ | BRANCH IF CARRY SET
*40 SEC SET CARRY

*+3 BCS FB BRANCH |F CARRY SET
*15 CLC - CLEAR CARRY

* +6

IF THE CARRY IS SET THE PROGRAM IS AS BEFORE IF IT IS CLEARED WE SET IT
& BRANCH FB

2's COMPLEMENT ADD *+5
| =B
* +0
—BACK TO THE BEGINNING. A RATHER COMPLICATED WAY OF CLEARING
THE CARRY.

MOST OF THE NON-BRANCH INSTRUCTIONS WILL CHANGE SOME OF THESE 4
TESTABLE FLAGS, USUALLY THE N & Z FLAGS SINCE THEY CONSTANTLY
MONITOR THE STATUS OF OPERANDS SO BRANCHES WILL APPEAR RATHER
FREQUENTLY IN PROGRAMS.

4.2 INDEXING
IF YOU WISHED TO CLEAR (SET EACH BYTE TO @) A PATCH OF MEMORY, e.g.
THE MEMORY USED TO STORE THE DATA WHICH IS TO BE QUTPUT TO THE
DISPLAYS, WHICH IS FROM @@10 TO 9@17, YOU MIGHT THINK
LDA# 00 LOAD ACCUMULATOR IMMEDIATE WITH 00
STAZ 10 STORE ACCUMULATOR IN ADDRESS 0@1¢
STAZ 11 STORE ACCUMULATOR IN ADDRESS 0811
STAZ12 STORE ACCUMULATOR IN ADDRESS @012

STAZ17 STORE ACCUMULATOR IN ADDRESS 0017
IS NECESSARY. THIS LOOKS SUFFICIENTLY REGULAR THAT THE COMPUTER
SHOULD BE ABLE TO DOT IT. THIS ISWHERE THE INDEX REGISTERS
REAPPEAR. WE CAN STORE THE ACCUMULATOR INDEXED BY EITHER INDEX
REGISTER

STAZX 95 “STORE A INDEXED BY X IN ZERO

PAGE"
STAZX 10

STA ZX10 0ooF

~ (0010
0911
3012
9913
@015
0016
@917

A ISSTORED IN 17 WHICH IS 1@ THE "BASE ADDRESS"” +@7 THE “INDEX"

IF WE DO
A2 ¢7 LDX # 97
9510 STAZX 10
THE STORE IS TO LOCATION 17 (=10 + X). THE ADDITION IS STRAIGHT-
FORWARD BINARY, TRUNCATED TO A LOCATION IN ZERO PAGE SO
LDX# FF
STAZX 10
STORES IN LOCATION @F
WE ALSO HAVE
STA, X 9D "STORE A INDEXED BY X*
STA,Y 99 “STORE A INDEXED BY Y"
(BUT NO STAZ,Y) WHICH DO NOT NEED TO TRUNCATE THE ADDITION
THEY EXPECT A TWO BYTE ADDRESS SO

LDX # FF
STA, X 0010
STORES IN LOCATION @10F
NOW .
DEX CA "DECREMENT (IN HEX) X BY ONE"
SETS THE Z FLAG IF X IS ZERO, & THE N FLAG EQUAL TO BIT 7 OF X.
BPL 10 "“"BRANCH IF PLUS"

TAKES THE BRANCH |F THE N FLAG IS CLEAR I.E. IS SAYING ‘NOT NEGATIVE’
I.E. PLUS. IT'S EASY TO SEE THAT THE COMBINATION

DEX

BPL_FD]
DECREMENTS X ONCE AND, IF THE RESULT WAS POSITIVE (I.E. IN THE
RANGE @ — 7F) IT TAKES THE BRANCH AND DECREMENTS X AGAIN. ... AND
AGAIN UNTIL IT REACHES A NON-POSITIVE NUMBER, WHICH WILL BE FF,
WHEN IT DOESN'T TAKE THE BRANCH. IF WE START AT 7 AND EACH TIME
AROUND THE LOOP CLEAR THE RELEVANT DISPLAY:

CODE LABEL MNEMONICS COMMENT

A9 00 LDA # 00 LOAD ACCUMULATOR IMMEDIATE

A2 07 . LDX # @7 LOAD X IMMEDIATE

9510 LOOP:STAZ X 10 STORE X IN ZERO PAGE INDEXED
BY X

CA DEX DECREMENT X BY ONE

10 FB BPL LOOP BRANCH IF PLUS TO “LOOP”

SO WE CAN WRITE A VERY SHORT PROGRAM TO CLEAR THE DISPLAY. BY
MAKING THE LOOP SLIGHTLY LARGER (WITH THE SAME LENGTH OF
PROGRAM)

P60 A2 @7 LDX #07
0p62 B5 48 LOOP:LDA Z, X 48
@064 95 10 STAZX10
2066 CA DEX

0067 10 F9 BPL LOOP
0069 4C 04 FF JMP FF@4

WE CAN, INSTEAD OF CLEARING THE DISPLAY, CAUSE A BLOCK OF MEMORY,
0048 — PP4F, TO BE TRANSFERRED TO THE DISPLAY. THE PROGRAM IS
POSITION INDEPENDENT SO YOU CANWRITE IT INTO MEMORY ANYWHERE,. ..
EXCEPT LOCATIONS 80160 — §017. IF YOU PUT THE PROGRAM IN@@48 IT
WILL FUNCTION PERFECTLY BUT YOU WON'T BE ABLE TO CHANGE THE DATA
WHICH IS MOVED, SINCE THIS IS THE PROGRAM. YOU CAN TRY THE PROGRAM
USING THIS DATA

0048 @@ 77 58 BC 50 54 00 00

OR YOU COULD CONSTRUCT YOUR OWN DATA, USING APPENDIX A.

THE INDEXING MECHANISM SHOWN ABOVE IS ONLY CAPABLE OF DEALING
WITH 256 (CONSECUTIVE) BYTES, STARTING AT A GIVEN ADDRESS. THUS

A9 00 LDA # 00 LOAD A IMMEDIATE WITH “¢@”
A8 TAY TRANSFERATOY

18 LOOP: CLC CLEAR CARRY

79 00 FE ADC, Y FEQO ADD WITH CARRY INDEXED BY Y
c8 INY INCREMENT Y

D@ F9 BNE LOOP BRANCH IF NOT EQUAL

2p 60 FE JSR FE6Q JUMP SUBROUTINE

4C Q4 FF JMP FFQ4 JUMP

COMPUTES THE LOWEST BYTE OF THE 256 BYTE ADDITION. (NOTE THAT,
SINCE Y IS ZERO WHEN YOU LEAVE THE MONITOR BY THE GO FUNCTION,
THE INITIALISATION OF A & Y CAN BE ACCOMPLISHED BY TYA INSTEAD OF
LDA # 00, TAY) HOW COULD THIS BE DONE FOR ALL 65536 MEMORY BYTES?
CLEARLY IT IS POSSIBLE TO HAVE AN ADC, Y FOR EACH PAGE:

98 TYA
18 LOOP: CLC

79 00 09 ADC, Y 0000

18 CLC cLC

79 00 FF ADC, Y 6100 256 ADC, Y INSTRUCTION PAIRS
18 cLC

79 00 FF ADC, Y FFO®

cs INY*®

FO 03 BEQ END

4C?? JMP LOOP

20 60 FE END JSR FE6Q

4C @4 FF JMP FFQ4

IN ORDER TO.SHORTEN THIS PROGRAM WE WILL INTRODUCE THE CONCEPT
OF “INDIRECTION".

4.3.INDIRECTION:

YOU'LL NOTICE THAT THE PROGRAM IS NOT POSITION {INDEPENDENT: THE
ADDRESS OF THE CLC INSTRUCTION MUST BE WRITTEN INTO THE PROGRAM.
THIS IS ANOTHER DISADVANTAGE OF THIS METHOD: (THERE IS AN
ADVANTAGE: THIS PROGRAM IS VERY FAST, TAKING ONLY 6uS PER BYTE).
THE INSTRUCTION REQUIRED MUST HAVE A 16 BIT UNFIXED ADDRESS AND
THIS CAN ONLY GO IN ONE PLACE : MEMORY. A LIMITATION IS THAT
GENERALLY IT CAN ONLY BE IN ZERO PAGE MEMORY. THE CONCEPT IS
KNOWN AS INDIRECTION. THE MOST DIRECT VERSION OF THIS IS THE
INDIRECT JUMP.

6C 0200 JMP (0002)

THIS IS THE ONE VERSION OF INDIRECTION THAT DOESN'T NEED TO REFER
TO ZERO PAGE MEMORY. WHAT HAPPENS IS THIS:

TIME,uS ADDRESS BUS DATABUS R/W

1) pC 6C 1 JUMP INDIRECT

1 PC+1 @2 1

2 PC+2 00 1

3 0002 \ 1 LOWER BYTE

4 0003 U 1 HIGHER BYTE

5 uv OPCODE 1 OLD 6C COMPLETED

THE MONITOR USES A JUMP INDIRECT FOR THE GO FUNCTION, HAVING
BUILT THE ADDRESS IN 0002 & 0003 : A JUMP INDIRECT VIA 0002 & 00@3,
ASSUMING THAT THESE LOCATIONS HAVEN'T BEEN ALTERED, WILL THUS
RETURN TO THE START OF THE PROGRAM —WITHOUT KNOWING WHERE
ITHAD BEEN ENTERED INTO MEMORY AT THE TIME OF WRITING.
INDIRECT JUMP
MAIN PROGRAM [ZERO PAGE

JMP (00@2) :
12 0ge2
34 : 0003
4
ROUTINE
XX 1234
XX 1235

XX 1236
WELL, THAT WAS SIMPLE INDIRECTION. NOW WE'LL MOVE ONTO THE MORE
COMPLICATED MODES OF INDIRECTION. HAVING FETCHED THE ADDRESS
OUT OF MEMORY WITH THE INDIRECTION STAGE, WE CAN INDEX IT. THIS IS
CALLED POST-INDEXED INDIRECTION. WITH THE 65XX SERIES OF MICRO-
PROCESSORS YOU MAY ONLY

[- INDEX IN THIS MODE WITH THE Y INDEX REGISTER

Il USE ZERO PAGE MEMORY

TIME,uS ADDRESSBUS DATABUS R/W

o PC B1 1 LDAIDY

1 PC+1 1 1

2 001 J 1

3 OoT+1 K 1

4 KJ+Y DATA 1 (AN EXTRA uS IS NEEDED IF J+Y
5 PC+2 OPCODE 1 RESULTS IN A CARRY)

THIS IS THE MODE OF ADDRESSING NEEDED TO SOLVE THE 655636 BYTE
ADDITION PROBLEM. MEANWHILE WHAT ABOUT THE X REGISTER AND
INDIRECTION? HERE WE HAVE PRE-INDEXED INDIRECTION

TIME,uS ADDRESSBUS DATABUS RMW

@ PC Al 1 LDA(IX)
1 PC+1 1 1
2 001 DATA, 1
DISCARDED
3 PaI+X J 1 NO CARRY TO HIGH ORDER BYTE
4 @@I+X+1 K 1
5 KJ DATA 1 PUTINA
6 PC+2 OP CODE 1

THIS IS THE OPPOSITE TO POST-INDEXED ... HERE THE INDEXING SWITCHES
BETWEEN DIFFERENT INDIRECTION LOCATIONS. THE EFFECTS OF THESE
TWO INDEXING MODES ARE ONLY THE SAME IN THE TRIVIAL CASE OF ZERO
INDEXES. HERE IS THE SOLUTION TO THE 65536 BYTE ADDITION:

98 TYA —ZEROY & A
85 20 STAZ20

85 21 STA Z 21 SET UP INDIRECT LOCATIONS
18 LOOP CLC

7120 ADC (20}, Y

Cc8 INY

D@ FA BNE LOOP

EG 21 INC Z 21

DO F6 BNE LOOP

2060 FE JSR FE6@

AC @4 FF JMP FF@4

THE PROGRAM IS, ONCE AGAIN, POSITION INDEPENDENT. IT IS, AS IMPLIED IN
THE FIRST SOLUTION, SLOW : 12uS PER BYTE. THIS IS MAINLY DUE TO THE
SMALL SIZE OF THE LOOP : THE 3uS ‘NEARLY ALWAYS TAKEN' BRANCH 1S
TAKING A DISPROPORTIONATE AMOUNT OF TIME, IN THE FIRST SOLUTION
THE EQUIVALENT 5uS BRANCH AND JUMP COMBINATION OCCURS ONLY
EVERY 2566 BYTES AND IS THUS IGNORED IN THE TIME CALCULATIONS.

THE INSTRUCTION INC Z 21 HAS AN OBVIOUS FUNCTION : INCREMENT (IN
HEXADECIMAL) LOCATION @@21. {T ACTS JUST LIKE INX OR INY — BUT IT
TAKES 5uS INSTEAD OF 2uS.

4.4 READ-MODIFY WRITE INSTRUCTIONS

THERE ARE COMPANION INSTRUCTIONS TO INC Z THAT CAN DIRECTLY

ALTER MEMORY CONTENTS, THESE ARE CALLED READ-MODIFY-WRITE

INSTRUCTIONS, THENEXT OF WHICH IS THE OBVIOUS DEC INSTRUCTION.

THE OTHER FOUR ARE NEW, THEY ARE SHIFTS AND ROTATES. LET'S USE ASL
AS AN EXAMPLE
0079 A955 LDA #55 LOAD A IMMEDIATE WITH 55

72 QA ASLA ARITHMETIC SHIFT LEFT

73 2060 FE JSR FE60 JUMP TO SUBROUTINE

76 AC@4 FF JUMPFF@4 JUMP
THE RESULT OF RUNNING THIS PROGRAM IS AA ON THE DISPLAY. EACH BIT
IN THE ACCUMULATOR HAS BEEN SHIFTED ONE BIT LEFT.

c A
BEFORE G1610101
AFTER / 10101010 @
ROLA, ROTATE LEFT ACCUMULATOR, (2A) WILL HAVE THE SAME EFFECT,
EXCEPT THAT THE RIGHT INPUT @ IS REPLACED BY C, IN THIS CASE 1, SO

THE RESULT IS AB.
LSRA,LOGICAL SHIFT RIGHT ACCUMULATOR (4A)

C
BEFORE @ 01010101 -2A
AFTER BN T ETVATAT

RORA, ROTATE RIGHT ACCUMULATOR (6A) WILL REPLACE THE LEFT INPUT @
WITH C TO GIVE AA
ALL THESE INSTRUCTIONS MAY BE USED DIRECTLY ON MEMORY LIKE INC Z.
4.5 MISCELLANEOUS REMAINING INSTRUCTIONS
THERE ARE A FEW INSTRUCTIONS LEFT, WHICH WILL HAVE TO BE DEALT
WITH PIECE-MEAL:
BRK @3 : THE MICROPROCESSOR HAS TWO INTERRUPTS, AS EXPLAINED IN
THE HARDWARE SECTION, AND THE INSTRUCTION SIMULATES AN
IRQ, FIRST SETTING THE B FLAG IN THE STATUS REGISTER. THE
RETURN AFTER A BREAK WILL BE AT THE NEXT BUT ONE BYTE
BIT 2C : A COMBINATION OF TWO INSTRUCTIONS
| READ MEMORY BITS 6 & 7 INTO THE OVERFLOW &
NEGATIVE FLAGS
1 LOGICAL AND ACCUMULATOR AND MEMORY, A ZERO
RESULT SETTING THE Z FLAG. THE RESULT IS NOT
LOADED INTO THE ACCUMULATOR. THE INSTRUCTION
IS USUALLY USED TO TEST THE STATUS OF
PERIPHERAL DEVICES, WITHOUT UPSETTING A X OR Y.
RT!, RTS 48,60 BOTH INSTRUCTIONS PULL THE PROGRAM COUNTER FROM
THE STACK, RTI FIRST PULLS THE PROCESSOR STATUS
FROM THE STACK.

CHAPTER 5: ACORN HARDWARE —

5.1 CHIP LAYOUT AND BUS

BEFORE PLUNGING DEEPER INTO SOFTWARE WE'LL TAKE A REST AND LOOK
AT THE HARDWARE. WE'LL START WITH THE CPU BOARD

L'G NOILO3S

snd

13S°S0dv

00S1¥L

D)

6ELSVL

)

vG1i8

[As|

d

91LC

LLGSYL

—

LGSV /L

vOoSv/

5

0CS¥L

9

04yl

AviX

1IAN

viLez

143%4

¢0G9

vGlL8

lg

T advOogA3d

THE OBVIOQUS IMPORTANT DEVICE HERE IS A, THE MICROPROCESSOR. THIS IS
WHERE A,X,Y,P,S,PC LIVE. FROM HERE COME THE COMMANDS TO RUN
EVERYTHING ELSE. THERE ARE TWO PRIMARY BUSSES, CONSISTING OF
PARALLEL PATHS OF BINARY DATA, THE BIGGEST BUS IS THE ADDRESS BUS.
THIS CONSISTS OF 16 LINES TO TRANSFER THE ADDRESS GENERATED BY
THE PROCESSOR TO THE ADDRESS INPUTS OF ALL OTHER SYSTEM CHIPS.
THIS BUS IS UNIDIRECTIONAL : ONLY THE PROCESSOR (IN A NORMAL
SYSTEM) GENERATES ADDRESSES, AND IT HAS 2'® STATES (=65536,) THE
SECOND BUS IS THE DATA BUS. TH!S IS 8 BI-DIRECTIONAL LINES, ALLOWING
A SINGLE WORD/BYTE TO BE TRANSFERRED EITHER FROM THE PROCESSOR
TO MEMORY — AWRITE, OR FROM MEMORY TO PROCESSOR — A READ.

THE REMAINING BUS IS THE CONTROL BUS, ITS MEMBERS HAVE NO
PARTICULAR RELATIONSHIP WITH EACH OTHER, BUT THEY ARE ALL SUPER-
VISORY SIGNALS FOR THE SYSTEM. THE FIRST CONTROL SIGNAL IS THE R/W
LINE. THIS SPECIFIES THE TYPE OF DATA TRANSFER THAT THE PROCESSOR
WISHES TO MAKE: WHEN THE R/W LINE IS HIGH (LOGIC ONE; > 2.4V DC) THE
PROCESSOR IS READING WHEN THE R/W LINE 1S LOW (LOGIC ZERO < @8 V DC)
THE PROCESSOR IS WRITING,THE NEXT CONTROL LINES ARE THE SYSTEM
CLOCK, WHICH CONTROLS THE TIMING OF ALL DATA TRANSFERS. THE
PROCESSOR, WITH HELP FROM 1/6 OF ATTL IC, GENERATES THE SYTEM
CLOCK AS TWO NON-OVERLAPPING SQUARE WAVES, PHASE ONE {01) & PHASE
TWO (02)

§1 —

DURING @1 THE ADDRESS BUS AND THE R/W LINE CHANGE, AT THE END OF,
OR DURING, 02 THE DATA IS TRANSFERRED. OTHER CONTROL SIGNALS ALSO
CHANGE AT TIMES SPECIFIED WITH RESPECT TO THE SYSTEM CLOCK, E.G.
THE SYNC SIGNAL : THIS GOES HIGH DURING 01 WHEN THE PROCESSOR 1S
FETCHING AN INSTRUCTION,AND RETURNS LOW WITH THE TRAILING EDGE
OF 02.

5.2 RESET. INTERRUPT REQUEST AND NON-MASKABLE INTERRUPT
ANOTHER CONTROL LINE IS RESET. THIS IS GENERATED BY SUITABLE HARD-
WARE (IN THE ACORNTHE CORNER SWITCH ON THE CPU BOARD, AND THE RE-
SET SWITCH ON THEKEYBOARD,) ANDCAUSES ALL PARTS OF THE SYSTEM TO
BE RESET TO A SAFE, KNOWN STATE. IN THE PROCESSOR’S CASE RESET
INITIALIZES THE PROGRAM COUNTER TO THE CONTENTS OF ADDRESSES
FFFC AND FFFD WHICH, FOR ACORN, CONTAIN THE ADDRESS FEF3.
EXECUTION OF THE ACORN MONITOR STARTS THERE. PERIPHERAL DEVICES
SHOULD BE SET TO THEIR LEAST DANGEROUS STATE BY RESET, E.G.
REMOVE INTERRUPT CAPABILITY, SET ALL PROGRAMMABLE INPUT/OUTPUT
LINES TO INPUTS.
THE TWO PUSH BUTTONS ON THE CPU BOARD ON EITHER SIDE OF THE RESET
BUTTON ARE INTERRUPT BUTTONS. THE IDEA OF AN INTERRUPT IS TO
PULL THE PROCESSOR AWAY FROM IT'S CURRENT TASK, LET IT BRIEFLY DO
SOMETHING IMPORTANT AND THEN RETURN TO IT'S TASK AS I+ NOTHING
HAD HAPPENED. THE 65@2 HAS TWO DISTINCT INTERRUPT CAPABILITIES
IRQ
WITH AN INTERRUPT REQUEST, IRQ, THE PROCESSOR HAS THE OPTION OF
IGNORING IT. AN IRQ IS ONLY GRANTED IF THE FLAG I {INTERRUPT
DISABLE) IN THE PROCESSOR STATUS REGISTER IS @. THE PROCESSOR
THEN PUSHESPC & P& THEN SETS1TO 1. (THE STATE OF THE IRQ LINE IS
CHECKED BETWEEN INSTRUCTIONS .. . IF IT REMAINS LOW,WE DON'T
WANT ANOTHER INTERRUPT). THEN THE PROCESSOR LOADS PC FROM
LOCATIONS FFFE & FFFF AND CONTINUES. NOTE THAT AN RTI RETURNS
THE ORIGINAL P, WHICH HAD THET FLAG 0.
NMI
WITH A NON-MASKABLE INTERRUPT, NMI, THE PROCESSOR HAS NO
OPTIONS, WHEN THE LINE HAS BEEN LOW FOR AT LEAST TWO CLOCK
CYCLES, THE PROCESSOR WILL FINISH ITS CURRENT INSTRUCTION, SAVE
ITSSTATUS & PC,SETIHIGH AND FETCH A NEW PC FROM FFFA & FFFB.
TO AVOID-RECOGNISING ANOTHER INTERRUPT NMI IS EDGE-SENSITIVE:
NO FURTHER INTERRUPTS ARE RECOGNISED UNTIL NMI HAS RETURNED
HIGH. SINCE NMI SETSTHIGH, IRQWILL NOT SUCCEED DURING THE
NORMAL OPERATION OF AN NMI PROGRAM, BUT NMI WILL BE ABLE TO
TAKE CONTROL DURING EXECUTION OF AN {RQ PROGRAM; IT HAS A
HIGHER PRIORITY.
IRQ, NM1, & RESET ARE OPEN-COLLECTOR LINES ON THE CPU BOARD: MANY
INTERRUPTING/RESETTING DEVICES MAY BE CONNECTED.

+bV
4K DEVICE 1

l\

RST, IRQ, Nuljr >L— DEVICE2 ------
oV

TO DECIDE WHICH DEVICE CAUSED AN INTERRUPT THE PROCESSOR CHECKS
A STATUS REGISTER OF EACH DEVICE, USING THE BIT INSTRUCTION TO TEST
BIT 7 OF THE DEVICE. AFTER EXECUTING THE PROGRAM REQUIRED FOR A
PARTICULAR DEVICE THE PROCESSOR RESETS THE DEVICE'S INTERRUPT
BEFORE EXECUTING ITS RT]. IF THE INTERRUPT LINE IS STILL LOW (IRQ) OR
MAKES ANOTHER NM!I THE WHOLE THING IS REPEATED. THIS PRIORITIES THE
INTERRUPTS IN SOFTWARE.

5.3 6502 INTERNAL ARCHITECTURE

-——— REGISTERS CONTROL ==t

/ [1
['} | Vee
INDEX <1 -—
(©) \ -
1 -] Vss
(19) - n2n
2 INDEX &
{11} X
3 -— jt———————— RDY (2)
21 2 TIED HIGH ON ACORN
<
1; - A | kd stack B
a3 S 1 ., F——+=swco
5 -l &
ot E Cu
6 - - ""m gg
(15) ALU g 5S fe————so0.@®)
7 g Za TIED HIGH ON ACORN
DDRESS ¢ (16) 3
Js :
8 -] Accumulator [+ TIMING
(17) A z [“*JCoNTROU
9 -
(18) o1
Program e -
10 < < Cougr:?er PCL Loy 1
(19}
11 -l <= PCH =
I PROCESS
(20) il = L] CLOCK CLOCK
i - < 1 3TATYS GeneraTor [+ neuT @ ©7)
PN v 2
(22) - . DATA — L_> @1 (3)
13 LATCH 02 (39)
(fi) <J ‘—b R/MW (34)
(24) DATABUS [INSTRUCTION
5 L‘ BUFFER REGISTER
(25} I>0 (33]
1 (32)
-2 DATA
=BYTE >3 (30
ﬂ LINE A e
=5 (28)
f = 1BITLINE -6 (27)
o7 (26)

() PIN NUMBER

5.4 PROMS, EPROM, RAM, RAM 1/O0

THE NEXT THINGS CONNECTED TO THE CPU ARE DEVICES D. THESE ARE
PROMS: PROGRAMMABLE READ ONLY MEMORYS. EACH CONTAINS 512 X 4
BITS OF INFORMATION WHICH HAS BEEN FIXED AS HALF OF THE ACORN
MONITOR. SHORT OF CATASTROPHIC DESTRUCTION THERE IS NOWAY TO
MAKE A "HIGH' PART OF THE MEMORY 'LOW’, BUT ‘LOW’ PARTS CAN BE
PROGRAMMED ‘HIGH’' BY PASSING EXCESS CURRENT THROUGH A FUSE AND
DESTROYING IT. IN NORMAL ACORN OPERATION THESE TWO DEVICESWILL
BE ENABLED BY ANY ADDRESS IN THE RANGE F800 TO FFFF: THEY THUS
OCCUR IN THE MEMORY FOUR SEPARATE TIMES, MORE ON THIS ANON.

AKIN TO D, IS DEVICE E. THIS IS NOT PART OF THE KIT, BUT IS INTENDED
TOBE A2048 X 8 EPROM: ERASEABLE PROGRAMMABLE READ ONLY MEMORY.
LIKE THE PROM, THE EPROM CAN BE PROGRAMMED ALTHOUGH FUSES ARE
NOT BLOWN BUT CHARGE IS STORED ON THE GATE OF A FIELD EFFECT
TRANSISTOR (F.E.T.). THIS CHARGE CAN ONLY LEAK AWAY SLOWLY — ABOUT
TEN YEARS, UNLESS THE GATE IS EXPOSED TO ULTRA-VIOLET LIGHT WHICH
HAS ENOUGH ENERGY TO SET THE DEVICE BACK TO IT'S STANDBY STATE.
{IF YOU MAKE ONE PROGRAM MISTAKE THE WHOLE DEVICE MUST BE
ERASED TO ALLOW YOU TO CORRECT THE MISTAKE. STILL, IT'S BETTER
THAN NOT BEING ABLE TO CORRECT A MISTAKE ASWITH THE PROM). AN
ENABLE SIGNAL IS PROVIDED BETWEEN F@9@ & F7FF FOR THIS DEVICE, OR
ELSE IT MAY BE PROGRAMMED WITH A LARGER MONITOR AND ENABLED BY
THE F80P — FFFF SIGNAL. SMALLER {1024 X 8 or 512 X 8) EPROMS MAY ALSO
BE FITTED IN SOCKET E, BUT THESE OLDER DEVICES USUALLY REQUIRE
ADDITIONAL POWER SUPPLIES, AND TWO MODIFICATIONS TO THE CIRCUIT
BOARD ARE REQUIRED TO ALLOW THIS.

THE LAST TYPE OF MEMORY ON THE CPU BOARD IS TYPE C. THIS IS ASTATIC
READ/WRITE MEMORY: INFORMATION CAN BE CREATED AND DESTROYED
BY THE MICROPROCESSOR ITSELF, BUT ALL IS LOST WHEN THE POWER IS
REMOVED. TOGETHER WITH THE DYNAMIC VERSION, THIS TYPE OF DEVICE
HAS RECEIVED THE NAME RANDOM ACCESS MEMORY R.AM._, ALTHOUGH
THEY ARE NO MORE RANDOM THAN P.R.O.M.S. OR E.P.R.O.M.S. DEVICES C
ARE 1024 X 4 RAMS, TWO ARE REQUIRED LIKE THE TWO PROMS TO BUILD UP
AWHOLEBYTE, AND THEY ARE ENABLED BY ADDRESSES IN THE RANGE
@00 TO G3FF. THEY THUS CONTAIN ZERO PAGE & PAGE 1, THE STACK PAGE,
ASWELL AS TWO FURTHER PAGES.

THE ENABLE SIGNALS FOR ALL I.C.S. ON THE CPU BOARD ARE PROVIDED BY
THE LOGIC I.C."S G. THESE |.C.S. DECODE CERTAIN RANGES OF ADDRESSES
FROM THE ADDRESS BUS BY RECOGNISING A PATTERN ON HIGH ADDRESS
LINES, E.G. FOR THE SIGNAL TO THE TWO RAM’S THE TOP 6 {A15—A10)
ADDRESS LINES MUST BE LOW (LOGIC ZERO).THE SIGNALS ARE ALL
BROUGHT TO THE SOCKET F, WHERE LINKS CAN BE MADE (OR AD.I.L.
HEADER USED) TO TAKE THE ENABLE SIGNALS AWAY TO THE CHOSEN
DEVICES THUS MANY DIFFERENT SYSTEM CONFIGURATIONS CAN BE USED,
FROM JUST THE TWO P.R.O.M.S AND DEVICE B1, THROUGH TO BOTH C'S, B2 &
E OR'ANY COMBINATION.

DEVICES B HAVE TWO FUNCTIONS. IN THE FIRST PLACE EACH CONTAINS A
128 X 8 RAM, BRINGING THE CPU BOARD UP TO 1280 BYTES OF R.AM.
SECONDLY EACH HAS THE FACILITIES FOR MAKING TWO WORDS OF MEMORY

{16 BITS) APPEAR IN A USABLE FORM FOR THE OUTSIDE WORLD. THE ACORN
MONITOR USES DEVICE B1 TO CONTROL THE DISPLAY, CASSETTE INTERFACE

AND KEYBOARD.

EACH ONE OF THE 16 LINES MAY BE PROGRAMMED TO BE AN INPUT OR AN

CONTROL
LINES

DB7-D8%

ADG-AD®

Data
Bus
Buffer

Bit
Operation

128 x 8 RAM

8154 RAM 1/0

PORT K= PA7-PAQ

PB7—-PB@

OUTPUT DEPENDING ON THE STATE OF INTERNAL CONTROL REGISTERS.
ONLY A GENERAL DESCRIPTION OF THE DEVICE IS GIVEN HERE, IN
ADDITION TO THE FOLLOWING FUNCTIONS PORT A MAY BE SET TO
OPERATE IN A VARIETY OF DIFFERENT HANDSHAKING TRANSFER MODES
BY USE OF THE MODE DEFINITION REGISTER. IT SHOULD BE NOTED THAT
THESE MODES REQUIRE CONNECTION OF INTERRUPT AND THAT THE
INS8154 INTERRUPT LINE IS THE INVERSE OF THAT REQUIRED BY THE
PROCESSOR.

THE 16 LINES ARE, AS YOU MIGHT EXPECT, DIVIDED INTO TWO SEPERATE
BYTE SECTIONS A & B. A & B BOTH HAVE AN “OUTPUT DEFINITION
REGISTER’* ASSOCIATED WITH THEM. EACH BIT IN THE O.D.R. DEFINES THE
ASSOCIATED BIT IN THE ‘PORT’ AS EITHER AN INPUT (@) OR AN OUPUT (1).
THUS, IN THE MONITOR WE WRITE .FF TO THE SEGMENT O.D.R. TO USE ALL
IT'S LINES AS OUTPUTS, AND ‘DISPLAY’ WRITES @7 TO THE DIGIT DRIVE
O.D.R. TO HAVE 3 OUTPUTS AND 5 INPUTS.

NOT ONLY MAY WE READ/WRITE TO THE OUTPUT PORT USING THE
PARALLEL READ & WRITE OPERATIONS, BUT WE MAY ALSO READ/WRITE
SINGLE BITS:

OPERATION ADDRESS LOW RW
SET BIT@® PORT A 10 W
SET BIT7 PORT A 17 W
CLEAR BIT @ PORT A 00 W
CLEAR BIT 7 PORT A @7 W
READ BIT® PORT A 00 or 10 R
READ BIT7 PORT A @7 or 17 R
SET BIT 1 PORT B 19 W
SET BITG PORT B 1E w
CLEAR BIT 2 PORT B A W
CLEAR BITbH PORT B (1D w
READ BIiT 4 PORT B @Cor1C R
PORT A 20 RorW
PORT B 21 RorW
O.D.R.A. 22 W
O.D.R.B 23 W

{F YOU READ A SINGLE BIT ITWILL END UP INBIT 7 OF ABYTE, THUS THE
BIT INSTRUCTION WILL ASSIGN IT TO THE TESTABLE N FLAG.

THE INS8154 ALSO CONTAINS A USEFUL 128 BYTES OF RAM. THIS IS
CONTINUOUS FROM (ADDRESS LOW) 8@ TO FF.

DEVICE B1 IS ENABLED FOR ADDRESS HIGH OF @E, DEVICE B2 IS AT @9.

ALSO ON THE CPU BOARD IS A 5V REGULATOR. THIS PROVIDES THE
REGULATED +5V POWER SUPPLY USED BY ALLTHE I.C.S. ON THE BOARD, AND
THE KEYBOARD/INTERFACE BOARD WHEN CONNECTED. |F THE 27¢4 OR

27¢8 TYPE OF E.P.R.O.M. IS EMPLOYED IN SOCKET E, EXTRA+12& -6V
POWER SUPPLY LINES ARE REQUIRED, AND TWO TRACKS ON THE P.C.B.

NEED CUTTING.

THE TWO CUTS ARE ON THE REAR
OF THE MPU BOARD IN THE TOP
LEFT HAND CORNER. X’s MARK
THE SPOTS

(THERE 1S NO PROVISION FOR ON-BOARD REGULATORS FOR THESE TWO
EXTRA SUPPLIES).

OF COURSE, THE 2716 EPROM NEEDS NO EXTRA SUPPLY LINES, AND IS THE
DEVICE THAT THE P.C.B. WAS DESIGNED FOR, IT PLUGS STRAIGHT INTO
SOCKET E.

THE CONNECTOR H CARRIES THE ADDRESS BUS, THE DATA BUS, THE
CONTROL BUS, POWER SUPPLY LINES AND THE 16 INPUT/OUTPUT LINES
FROM B2. THISWILL PLUG INTO A BACKPLANE WHICH TAKES THE BUSSES
TO OTHER ACORN CARDS.

5.5 THE KEYBOARD AND TAPE INTERFACE

AT THE OTHER END OF THE BOARD, CONNECTOR I CARRIES ALL 16 I/O LINES
FROM DEVICE B1, ASWELL ASQV, +bV, 02 & RESET LINES. WITH THE
INTELLIGENT ACORN MONITOR AND THE KEYBOARD BOARD, THE I/O LINES
ARE DEDICATED AS FOLLOWS

B1 PORT B®-7 OUTPUTS SEGMENT DRIVES
e AQ-2 OUTPUTS BINARY ENCODED DIGIT DRIVES
A3-5 INPUTS KEYBOARD ROW INPUTS
AB QUTPUT FROM COMPUTER TO CASSETTE

A7 INPUT FROM CASSETTE TO COMPUTER

—A COMMENT FOR THOSE INTERESTED: ALTHOUGH THE KEYBOARD ONLY
CONSISTS OF 24 KEYS AT PRESENT, IT IS POSSIBLE, WITH A PRIORITY
ENCODER ON THE ROW INPUTS, TO USE UP TO 56 KEYS. THE DISPLAY
SUBROUTINEWILL COPE CORRECTLY WITH THE UNKNOWN KEYS, EXCEPT
THAT, AT THE POINT, OUTPUT, IT THROWS AWAY A SIGNIFICANT BIT OF
INFORMATION. HOWEVER, THE ACTUAL KEY VALUE HAS BEEN STORED IN
LOCATION @@@F AND SO CAN BE RECOVERED. THE UNKNOWN KEYS WILL NOT
AFFECTTHE MONITOR ITSELF, SINCE AT THE POINT SEARCH MORE ITS OF
INFORMATION IS THROWN AWAY, LEAVING THE MONITOR WITH A CHOICE
OF EIGHT VALUES.

THE SUBROUTINE DISPLAY RUNS THE DISPLAY IN A MULTIPLEXED MANNER,
AT THE SAME TIME STROBING AND DEBOUNCING THE MATRIXED KEYBOARD
ON THE KEYBOARD BOARD. EACH OF THE EIGHT COLUMNS OF THE8 X 3
KEYBOARD IS DRIVEN BY ONE OF THE EIGHT DIGIT DRIVER LINES, THE
THREE ROW LINES ARE CONNECTED TO DEVICE B1, AND THEY ARE PULLED
TO LOGIC ONE BY THE 4K7 RESISTORS. IN CONJUNCTION WITH ITS COLUMN
BEING DRIVEN LOW, A CLOSED KEY PRODUCES A LLOW ON ONE OF THE ROW

INPUTS +bV
% E, E 4K7

M| G P S L R t v

3
4

ALL THE INTERFACE BETWEEN THE MICROPROCESSOR AND THE KEYBOARD
AND DISPLAY 1S THUS ACCOMPLISHED BY ONE OCTAL DECODER/DRIVER
AND THREE RESISTORS. THE REST OF THE CIRCUITRY ON THE INTERFACE
BOARD ALLOWS PROGRAMS TO BE RECORDED ON CASSETTE AT THIRTY
BYTES PER SECOND, THE INTERFACE IS SLIGHTLY MORE COMPLICATED
THAN THE SINGLE |.C. AND THREE RESISTORS USED ABOVE, IT HAS TWO
TASKS.

1 CONVERT THE SERIAL STREAM OF INFORMATION PRODUCED BY PUTBYTE
INTO TONES SUITABLE FOR AN UNMODIFIED CASSETTE RECORDER TO
RECORD.THE FREQUENCIES USED ARE 24(¢3.8 HZ FOR A LOGIC ONE AND
1201.9 HZ FOR A LOGIC ZERO. THE FREQUENCIES ARE PRODUCED BY
DIVIDING 2, WHICH IS CRYSTAL CONTROLLED AT 1 MHZ, BY 416 OR 832.

1l CONVERT THE PLAYED BACK FREQUENCIES INTO A STREAM OF BINARY
INFORMATION. THE PLAYBACK IS ‘AMPLIFIED’ INTO A SQUARE WAVE, AND
ITS PERIOD IS COMPARED WITH THE PERIOD OF A REFERENCE DIGITAL
MONOSTABLE ON THE CIRCUIT BOARD

BECAUSE OF THE AMPLIFICATION STAGE, THE OUTPUT FROM A TAPE

RECORDER'S ‘LINE’ OUTPUT, OR THE 'EAR’ JACK SOCKET, SHOULD PERFORM

SATISFACTORILY EVEN AT MODEST VOLUME LEVEL. HOWEVER THE

COMPUTER OUTPUT IS AT QUITE HIGH LEVEL AND SHOULD BE ATTENUATED

FOR THE TAPE RECORDER. TO PREVENT NOISE PICK-UP THIS SHOULD BE

DONE IN THE PLUG CONNECTING TO THE RECORDER

-w(\l -0 'FROM" TAPE

-0
SCREENED LEAD GROUND

PLUG

BEST RECORDING RESULTSWITH A LEVEL OF ABOUT TWO-THIRDS MAXIMUM
LEVEL. THE VERY CHEAPEST TAPE RECORDERS SOMETIMES USE A DC. ERASE
SYSTEM, AND SUBSTANTIALLY POORER RESULTS MAY OCCUR ON RECORDING
OVER AN ALREADY RECORDED SECTION OF TAPE. HIGH FREQUENCY
RESPONSE IS AT A PREMIUM IN THIS APPLICATION, THE TAPE RECORDER'S
HEADS SHOULD BE CLEANED FREQUENTLY, AND, PREFERABLY,
DEMAGNETISED EVERY'8—19 HOURS. LOW QUALITY TAPES SHOULD BE
AVOIDED SINCE THEY OFTEN CAUSE VERY FAST BUILD UP OF DIRT ON THE
HEADS. THE SPEED OF THE REPLAYED DATA SHOULD NOT DEVIATE BEYOND
5% OF THE RECORDED SPEED, SO DON'T USE BATTERIES FOR POWER, (OR C12¢
CASSETTES SINCE THE THINNER, HEAVIER TAPE OFTEN GETS STUCK). CLEAN
THE EXPOSED CAPSTAN AND PRESSURE WHEEL WHEN YOU CLEAN THE
HEADS: A HEAD CLEANING TAPE MAY NOT MANAGE TO REMOVE OXIDE
BUILD-UP FROM THE MECHANISM.

5.6 POWER SUPPLY

THE TWO BOARDS ARESUPPLIEDBY THE 5V REGULATOR ON THE CPU BOARD.
IF ALL THE I.C.S. ARE IN PLACE ON THE CPU BOARD, THEN AT LEAST 600 MA
IS REQUIRED. PROPER REGULATION IS ENSURED BY NEVER LETTING THE
INPUT UNREGULATED SUPPLY DROP BELOW +7V. WHILE THE REGULATOR IS
PERFECTLY HAPPY WITH +27V INPUT, IT WILL NEED TO DISSIPATE 13.2W AND
WILL GET EXTREMELY HOT... AND TURN ITSELF OFF DUE TO THERMAL
OVERLOAD, LOSING YOUR NICE PROGRAM IN THE R.A.M. UNLESS AN
ADDITIONAL HEAT SINK IS USED, +12V SHOULD BE REGARDED AS AN
ABSOLUTE MAXIMUM UNREGULATED INPUT, THE REGULATOR WILL NOT GET
SO HOT ASTO TURN ITSELF OFF, BUT YOU MIGHT RECEIVE A BURN IF YOU
TOUCH {T.

ADDITIONAL HEATSINK

CHAPTER 6: FIRMWARE

6.1 TAPE STORE AND LOAD

IN THE SOFTWARE SECTION WE USED SOME OF THE FUNCTIONS OF THE
ACORN MONITOR TO WRITE AND EXECUTE SOME SIMPLE PROGRAMS WHICH
DEMONSTRATED FEATURES OF THE MICROPROCESSOR AND PROGRAMMING.
THE MONITOR 1S MORE POWERFUL THAN DEMONSTRATED IN THAT SECTION,
AND HERE WE'LL EXAMINE IT MORE CLOSELY, AND GIVE A COMPLETE
LISTING OF IT. AFTER THE M, G, * AND { KEYS, THE MOST USEFUL KEYSWILL
PROBABLY BE S AND L. THESE ENABLE YOU TO STORE AND LOAD
PROGRAMS OF ANY SIZE USING CASSETTE TAPE OR A SIMILAR RECORDING
MEDIUM. LET'S ASSUME WE WISH TO CREATE A TAPE VERSION OF THE DUCK-
SHOOT GAME. THISWILL HAVE BEEN ENTERED IN MEMORY FROM ADDRESS,
SAY, 0200 TO ADDRESS 923F INCLUSIVE. AFTER TESTING THAT THE
PROGRAM ACTUALLY DOESWORK, PRESS THE S KEY.

F. XXXX

THE MONITOR IS PROMPTING YOU TO ENTER THE ADDRESS FROM WHICH
YOU WANT TO RECORD. THE DISPLAYED ADDRESS IS EITHER GARBAGE
OR THE LAST END ADDRESS USED. ENTER THE ADDRESS, TERMINATING
WITH ANY COMMAND KEY

F. 0200
- XXXX

THE MONITOR IS NOW PROMPTING YOU TO ENTER THE END ADDRESS. THIS
IS THE ADDRESS OF THE LAST BYTE IN YOUR PROGRAM + 1. THE
DiSPLAYED ADDRESS IS EITHER GARBAGE OR THE LAST END ADDRESS
USED. ENTER THE ADDRESS, BUT DON'T TERMINATE IT YET

- 02490

THE SYSTEM IS NOW READY TO SERIALLY OUTPUT THAT SECTION OF
MEMORY. YOU SHOULD RECORD A BRIEF VERBAL DESCRIPTION OF THE
PROGRAM — "DUCKSHOOT" — AND ALSO THE ADDRESSES (OR ADDRESS OF
START AND LENGTH) WHICH THE PROGRAM USES. KEEP A LIST OF WHICH
PROGRAMS ARE STORED ON EACH TAPE. NOW CONNECT IN THE COMPUTER
AND START RECORDING. AFTER A FEW SECONDS, PRESS ANY COMMAND
KEY TO TERMINATE THE ADDRESS ENTRY. THE DISPLAY WILL GO BLANK,
WHILE THE PROCESSOR DEVOTES ITSELF TO SENDING THE INFORMATION
TO THE TAPE. WHEN THE DISPLAY

- 02490

REAPPEARS, YOU MAY STOP THE TAPE-RECORDER: THE RECORDING IS
COMPLETE, AND YOU ARE BACK AT FF@4. ANY HEX KEY HERE WILL BRING
BACK THE MONITOR'S DOTS, OR YOU MAY JUST START USING THE
MONITOR. THE RECORDING PROCEEDS AT 3@ BYTES PER SECOND, THIS
PROGRAM, AT 68 BYTES (PROGRAM LENGTH +4 BYTES OF ADDRESS
INFORMATION) TOOK ONLY TWO SECONDS TO RECORD.

TO LCOAD A PROGRAM FROM THE TAPE YOU SHOULD BE IN ASITUATION
WHERE MONITOR COMMANDS ARE ACCEPTED, NOT WHERE YOU ARE
ALLOWED ANY KEY TO TERMINATE AN ADDRESS ENTRY. PLAY THE TAPE,
AND, WHEN THE 24¢3.8 HZ LEADER IS HEARD, PRESS THE L KEY. THE

DISPLAY WILL BE BLANK UNTIL DATA IS ENCOUNTERED ON TAPE, WHEN

EACH BYTE ENTERED WILL BE DISPLAYED AS A SYMBOL ON THE LEFTMOST
DIGIT. WHEN THE LAST BYTE HAS BEEN READ THE PREVIOUS DISPLAY WILL
RETURN — YOU'RE AT FF@4 AGAIN. THE ADDRESSES INTO WHICH THE
PROGRAM IS LOADED WILL BE THOSE WITH WHICH IT WAS STORED ON TAPE,
BUT YOU MAY WISH TO DELIBERATELY AVOID THIS. JUST USING THE MONITOR,
THE BEST THAT CAN BE DONE IS TO TREAT THE ENTIRE RECORDING AS DATA
AND LOAD ENOUGH OF IT TO FIT BETWEEN TWO ADDRESSES: THE FIRST

FOUR BYTES LOADED WILL THUS BE THE ORIGINAL ADDRESSES THE
PROCEDURE IS

| SET ADDRESSES 0008 & ¢@@99 TO THE LOW & HIGH BYTE OF THE ADDRESS
INTO WHICH YOU WISH TO PUT THE FIRST BYTE.

il SET ADDRESSES 0@0A & ¢@@B TO THE LOW & HIGH BYTE OF THE LAST
ADDRESS +1 INTO WHICH YOU WANT THE DATA TO BE LOADED.

{I1SET UP THE GO ADDRESS OF FF8A,START THE PLAYBACK,WHEN YOU
HEAR THE 24(3.8 HZ LEADER, PRESS ANY KEY TO GO. LOADING WILL
OCCUR BETWEEN THE ADDRESSES SPECIFIED.

THE ABOVE PROCEDURE MAY NOT BE SATISFACTORY: IT LOADS THE

PROGRAM'S ADDRESSES AS DATA, AND DESTROYS THE DATA IN REGISTERS

@ AND 1 (A & X AFTER A BREAKPOINT) BETTER METHODS ARE GIVEN IN THE

SYSTEM SECTION OF THE APPLICATION PROGRAMS

THE LAST COMMENT ON LOAD FROM TAPE IS THAT IT IS POSSIBLE TO

CREATE APROGRAM ON TAPE THAT WILL,WHEN LOADED, SEIZE CONTROL

AND EXECUTE ITSELF THIS IS IDEAL FOR, SAY, A BASIC INTERPRETER: YOU

JUST HAVE TO LOAD IT, AND {T AUTOMATICALLY SETS ITSELF RUNNING

AND PROMPTS READY. THE IDEA IS TO LOAD THE PROGRAM INTO THE

MONITOR'S ZERO PAGE REGISTERS, LOADING THE PROGRAM START ADDRESS

INTO GAP AND THE GO KEY (I1) INTO REPEAT. CARE MUST BE TAKEN WHEN

YOU LOAD INTO FAP AND TAP: YOU MUST BE SURE TO LOAD WHAT'S

ALREADY THERE, OR SOMETHING SENSIBLE!

6.2 THE BREAKPOINT AND RESTORE COMMAND

THE FINAL TWO MONITOR FUNCTIONS ARE EMBODIED BY THE KEYS R AND
P. YOU MAY ALREADY HAVE DISCOVERED THAT PRESSING R IS DISASTROUS,
AND THAT P {S LIKE M, BUT WITH A PENCHANT FOR INSERTING @0 INTO THE
ADDRESS SPECIFIED. WITH THESE KEYS YOU ARE EXPECTED TO DEBUG (A
BUG IS ANY SMALL MISTAKE PREVENTING A PROGRAM FROM
FUNCTIONING) YOUR PROGRAMS. THE P KEY ALLOWS YOU TO INSERT THE
BREAK INSTRUCTION ON TOP OF AN INSTRUCTION AT A POINT WHERE YOU
SUSPECT SOMETHING SUSPICIOUS IS HAPPENING, SAY 0200:

b 0200

AFTER THE ADDRESS ISSET UP, THEN ANY KEY WILL CHANGE THE STATE
OF IT'S CONTENTS: IF NOT A BREAK, A BREAK IS INSERTED, THE
ORIGINAL DATA ISSAVED IN LOCATION 0@18. IF A BREAK, THEN THE
CONTENTS OF @018 ARE INSERTED. THE RESULTING STATE OF THE
LOCATION {S DISPLAYED

P. 0200 . 00

WE ARE NOW BACK AT FF@4. BUT 1 & § NOW OPERATE ON THE P ADDRESS.
CONTENTS OF A LOCATION MAY BE CHANGED AS IF THIS WERE M.
PRESSING P TWICE WILL INSERT A BREAKPOINT (ONLY A SINGLE
LOCATION'S BACK-UP COPY IS RETAINED) AND SEND YOU BACK TO FF@4.
THE M KEY WILL RETURN IT'S MEMORY ADDRESS WHEN PRESSED
NOW THE PROGRAM IS SITTING THERE WITH A BREAK AT ¢209. EXECUTION
OF THISBREAK WILL CAUSE AN [RQ AND CONTROL IS TRANSFERRED TO
THE ADDRESS IN LOCATION @GIE & @01F: FOR DIAGNOSTICS THIS ADDRESS
SHOULD BE FFB3 (THE B3 IN @@IE & THE FF IN @0I%) ALSO
THE PROGRAM COUNTER REQUIRES RESETTING AFTER A BREAK. THE
AMOUNT BY WHICH THIS IS DONE, 2, SHOULD BE STORED IN LOCATION 0018
NOW EXECUTING THE BREAK CAUSES THE STATUS OF THE PROCESSOR TO
BE DISPLAYED IN THE FOLLOWING FORM

FIRST DISPLAY SET: [AlxTv [P (HEX PAIRS OF DATA IN EACH)
SECOND DISPLAY SET:[PC | SP |(TWO BYTES EACH, SECOND SET DISPLAYED
AFTER ANY KEY 1S PRESSED).

THIS PROGRAM

3200 78 SEI —SET INTERRUPT DISABLE

2p1 B8 CLv —-CLEAR OVERFLOW

0202 18 CLC —CLEAR CARRY

0293 F8 SED —SET DECIMAL MODE

0204 A9 11 LDA # 11 11

0206 A2 FF LDX #FF

0208 AQ33 LDY #33 33

0209A 9A XS —INITIALISE STACK

0208 A2 22 LDX #22 22

020D o0 BRK '

020E

CAUSES 1122333C FOR THE FIRST DISPLAY SET AND
020D01FC

FOR THE SECOND SET.
THE ACTIVE FLAGS ARE THE DECIMAL AND INTERRUPT DISABLE FLAGS,
{THE 2 PART OF THE STATUS REGISTER'S 2C IS AN UNUSED FLAG), THE
PROGRAM WAS STOPPED AT LOCATION @20D WITH AN EMPTY STACK (THREE
BYTES, PCH, PCL, P, WERE AUTOMATICALLY STACKED BY THE BRK
INSTRUCTION}. YOU MAY NOW CONTINUE TOWRITE (OR CORRECT) THE
PROGRAM, USING THE MONITOR AS USUAL (BUT AVOID PRESSING THE RESET
KEY SINCE THE STACKED PCH, PCL & PWILL BE DESTROYED) PRESSING THE
R KEYWILL RETURN YOU TO 020D TO TRY CONTINUING THE PROGRAM,

WITH THE COMPLETE PROCESSOR STATUS RECOVERED. THUS, IF WE FINISH
THE PROGRAM
20D 69 19 ADC #19

Y20F 2060 FE JSR RDHEXTD
0212 4C Q4 FF JMP RESTART
@215

30~
AND PRESS R, THE DISPLAYED ANSWER WILL BE %2’
6.3 THE SINGLE STEPPING FACILITY
A MORE INTERESTING USE OF THE ROUTINE BREAK AT FFB3 IS IF YOU GENERATE
GENERATE A NMI EVERY OPCODE FETCHED NOT IN THE MONITOR, AS DISCUSSED
DISCUSSED IN THE HARDWARE SECTION THE SYNC PULSE ISSUED DURING AN
OPCODE FETCH IS LESS THAN 1 CYCLE LONG, WHILE NMI REQUIRES AT LEAST 2
CYCLES. A LATCH IS REQUIRED TO STRETCH THE SYNC SIGNAL

7]\.(’, J—s-/\i;* le. &/‘1 S e covdy Cte A ’/’ rfe y2.3 ./;‘if:\«c FE 5 EE
Y e Liii L Cuvsione capeet g @l cry nefocd The thia wmcif o oo FHLS T4
% 741574
Lo PE197 Tonmioen
SYNC l I CcK 6 AN l/ COLLECTOR LINE
D
SET ey
PROMENABLE
SIGNAL

SINGLE STEP OPEN o/ 4K7

AND IT ALSO ONLY PROVIDES AN NMI WHEN NOT IN THE MONITOR. BEFORE
EXECUTING A PROGRAM SET THE NMI VECTOR (LOCATIONS @01C & @§@1D) TO
BREAK {FFB3) THE PROGRAM COUNTER RECALCULATION, IN @@1B, SHOULD
BE 00. EACH INSTRUCTION EXECUTED CAUSES THE MONITOR TO DISPLAY THE
STATUS OF THE PROCESSOR, PRESSING R CAUSES THE NEXT INSTRUCTION TO
BE EXECUTED. YOU MAY USE THE MONITOR TO ALTER A X,Y (LOCATIONS)
000A, B & C) OR P (AT STACK POINTER + 1), BEFORE THE NEXT STEP. IT IS
INADVISABLE TO CHANGE PC (STACK POINTER +2 & +3), BUT THIS CAN BE
DONE ASWELL. THE SINGLE STEP EXECUTION CAN BE STOPPED IN TWO WAYS
1 GROUND NMI{ LINE/GROUND THE SET INPUT OF THE D FLIP-FLOP

1l POINT THE NMI VECTOR AT AN RTI INSTRCTION, SAY THE ONE AT FFID
(EXECUTION OF APROGRAM WILL BE SLOWED DOWN BY A FACTOR OF 5 OR
SO DUE TO THE PERSISTENT NMI'S.)

AN IMPORTANT NOTE: THE BREAK ROUTINE SETS THE REPEAT LOCATION

TO FF, SO THAT IT, AND THE MONITOR, MAY SAFELY USE THE DISPLAY
ROUTINE. IF YOU NEED TO USE SINGLE SCANS AND BREAKS TO THE BREAK
ROUTINE, SOME INGENUITY WILL BE REQUIRED, OR SOME DEDICATED
BUTTON PUSHING.

NOW THE COMPLETE MONITOR LISTING. THIS ISWRITTEN TO FIT IN THE TWO
512 X 4 PROMS.

ADDR

FE 00

FE®C
FE QE
10
FE13
17
1A
1D
20
22

24
26

28
2A
2C
2E
FE 30
FE32
33
FE 36
38

3A

HEX
CODE

AQ
B5
20
CA
88

88
10

c9
BO
86
A9
85
88

Do
10

A5

30

10

@6

o0
6F

F6

1A
o7
22

o0
19

21
20

2¢
3F
PF

18
A

38
06
19
49
oF

FD
DB
OE

D2
14

LABEL

QUAD

STiLL

FE

0E

0E
QE

QE

DISPLAY
RESCAN

SCAN

KEY
CLEAR
DELAY

ACORN MONITOR

INSTRUCTION
LDY #06
LDA ZX 00
JSR DHEXTD
DEX

DEY

DEY
BPL STILL

STX Z TX
LDX #0907
STX 1 ADDR

LDY #00
LDAZXD

STA 1PIB
STX 1PIA

LDA 1PIA
AND #3F
BIT Z EXEC

BPL BUTTON
BVS DELAY

CMP #38

BCS DELAY
STX Z COL
LDA #49

STA € ECEC
DEY

BNE DELAY
DEX

BPL SCAN

LDA Z REPEAT

BMI RESCAN
BPL QUTPUT

COMMENTS

DISPLAY THE 4 BYTES AT X—3,X-2,

X—

1 & X IN THAT ORDER ON THE

DISPLAY

GET THE BYTE POINTED TO BY X
USE DOUBLE HEX TO DISPLAY
ROUTINE

NEXT X

NEXT Y POSITION

FALL AUTO DISPLAY WHEN
FINISHED —Y POSITION & ALSO
LOOP COUNTER

SAVE Xittl

SCAN 8 DIGITS, NO MATTER WHAT
SET UP DATA DIRECTION
REGISTER

CLEAR Y FOR LATER USE

GET DISPLAY DATA FROM THE
ZERO PAGE MEMORY

& PUT IT ONTO SEGMENTS

SET DIGIT DRIVE ON AND THE KEY
COLUMNS

GET KEY DIGIT BACK

REMOVE SURPLUS TOP BITS
CHECK STATUS = ‘I' MEANS NOT
PROCESSING A KEY

BUT @ MEANS THAT WE ARE

THUS CAN BE BLOWN TO AN
ESCAPE FROM THE DISPLAY
ROUTINE ALTOGETHER ON STATUS
C@® AT THE MOMENT IT IGNORES
KEYS IF GIVEN THIS STATUS
CHECK FOR ALL 1'S ROW INPUT
FROM KEYBOARD =SET COPY [OF SO
IF ALL 1's THEN NO KEY HAS BEEN
PRESSED

STORE THE PRESSED KEY'S
COLUMN INFORMATION

SET STATUS TO “WE ARE
PROCESSING A KEY"

Y WAS ZERO SO HERE IS A 256 X5US
DELAY
Y WILL BE ZERO ON EXIT

IF X WAS STILL TVE, CONTINUE
THIS SCAN

IF WE SHOULD CONTINUE
SCANNING THEN TOP BIT IS SET
CONTINUE SCANNING

{F TOP BIT IS ZERO, THEN USE THIS
DATA AS THE KEY ITSELF

FE3E

49
42

44
46

48
FE 4A
4c

4E
50

FEB2

54

62
FEG64

FE 66

68
FE 6C

E4

Do
c9

el
A9

D@
C5
Fo

85
49

29
Cco
85
AB
82
60
AP
AD
Do
AQ
B5

20
88

88

B5

19 BUTTON

FO
38

04
80

E6
oF PRESSED
E4

oF
38

1F OUTPUT
19
oD

1A .
21 QE

00 MHEXTD

@6 RDHEXTD
¢B
03 QHEXTD1

00 QHEXTD2
6F FE

o1

DHEXTD

7A FE

1A HEXTD
oF

EA FF
1A
10 20

CPX Z2COL

BNE DELAY
CMP #38

BCC PRESSED
LDA #8p

BNE KEYCLEAR
CMP Z EXEC
BEQ DELAY

STA Z EXEC
EOR #38

AND #IF
CcMP #10
STA ZKEY

LDX ZTX
STY 1PIB
RTS

LDA (20, X)

LDY #06

BNE DHEXTD
LDY #03

LDA 2)Y 00
JSR DHEXTD
DEY

DEY
LDA Z, X 91
INY

PHA
JSR HEXTD
DEY

PLA

LSR A
LSR A
LSR A
LSR A

STYZTY
AND #0oF
TAY

LDA, Y FONT
LDY Z TY
STA,Y D

ARE WE ON THE SAME KEY'S
COLUMN?

NO

HAS A KEY ACTUALLY BEEN
PRESSED?

YES

NO, THEN CLEAR THE EXECUTION
STATUS — THE KEY HAS BEEN
PRESSED & RELEASED

ALWAYS BRANCH

A KEY HAS BEEN PRESSED

BUT IT HAS ALREADY BEEN
EXECUTED

SET IT AS BEING EXECUTED
JIGGERY POKERY TO ENCODE THE
ROW INPUTS TO BINARY

ALSO ENSURE THE KEY IN REPEAT
WAS OF REASONABLE SIZE

A HEX KEY OR NOT? CARRY CLEAR
IF HEX

PUT THE KEY IN A TEMP LOCATION
FOR FURTHER USE (BY “"MODIFY"’)
RETRIEVE X

TURN THE SEGMENT DRIVES OFF
AND RETURN

MEMORY HEX TO DISPLAY = GET A
BYTE FROM MEMORY

RIGHT (OF DISPLAY) DOUBLE HEX
TO DISPLAY :SET Y TO RIGHT OF
DISPLAY

AND USE DHEXTD

QUAD HEX TO DISPLAY 1: SET Y
TOUSE POSNS 1,23& 4

2: USE ANY Y: GET THE DATA
AND USE DHEXTD

HAVING DECREMENTED THE
POSITION

GET THE HIGH BYTE OF THE DATA
& USE DHEXTD

DOUBLE HEX TO DISPLAY : FIRST
HEX ON RIGHTEST POSITION
SAVE A

USE HEX TO DISPLAY

GET Y BACK TO CORRECT
POSITION

RETRIEVE A

ORIENTATED FOR OTHER HEX
DIGIT

HEX TO DISPLAY =SAVE Y
REMOVE SURPLUS BITS FROM A
&PUTITINTY

GET THE 7 SEGMENT FORM
RETRIEVE Y

AND POSITION THE 7 SEG FORM ON
THE DISPLAY

64 FE QDATFE7

@c
20
94

00
o1

F8
E8
06

02
07
06

07
04
07
@9
40
22
07
20
cD
20
F6
CD
20
Do

1A
48

FD
FD
1A
08
20

FB
Do

CD

FE

SHIFTIN

COM 16

UDINC

RETURN
PUTBYTE

QE
0E

FE AGAIN

o]

FE

Qe

FE WAIT
% WAIT

WAIT 1

WAIT 2

GETBYTE

PE START

FE

FE INPUT

RTS
JSR QHEXTD1

JSR DISPLAY
BCS RETURN
LDY #p4
ASL A

ASL A

ASL A

ASL A

ASL A

ROL Z.,X 00
ROL Z,X 91
DEY

BNE SHIFTIN
BEQ QDATFET
INC Z,X 06

BNE NOINC
INC 2,X 07
LDA Z,X 06

CMP Z,X 08
BNE RETURN
LDA Z,X 07
CMP Z,X 09
RTS

LDY #40

STY 1ADDR
LDY #07
STY 1PIA
ROR A
ROR A

JSR WAIT
ROR A

STA 1PIA
DEY

BNE AGAIN
JSR WAIT
STY 1PIA
JSR % WAIT

STYZTY
LDY #48
DEY

BNE WAIT 1
DEY

BNE WAIT 2
LDYZTY
RTS

LDY #08
BIT 1PIA

BMI START
JSR 12 WAIT

JSR WAIT

QUAD DATA FETCH — DISPLAY OLD
DATA

GET KEY

NON HEX RETURN

LOOP COUNTER

DIGIT IN A IN CORRECT PLACE
MULTI SHIFT TO GET DIGIT INTO
MEMORY

INDEXED

KEEP SHIFTING IN

GO AND DO IT ALL AGAIN
INCREMENT & COMPARE 16 BIT
NOS — INCREMENT LOWER

NO HIGH INCREMENT

LOW BYTE EQUALITY TEST

NO NEED TO DO HIGH BYTE
HIGH BYTE EQUALITY TEST

PUT BYTE TO TAPE — CONFIGURE
1/0 PORT

LOOP COUNTER
AND SEND THE START BIT

BACK A UP A COUPLE OF BITS
WAIT TO SEND OUT RESET BIT
SENDING ORDER ISBIT @—>BIT 7
SEND BIT

KEEP GOING

WAIT FOR THAT BIT TO END

SEND STOPBIT : Y ISFF

300 BAND WAITING TIME — IN TWO
PARTS

% THE WAITING TIME — SAVE Y

72 X 5uS DELAY

PART ONE OF THE WAIT

Y WAS ZERO ON ENTRY — 256 x 5US
DELAY

RETRIEVE Y

GET BYTE FROM TAPE — LOAD
COUNTER

WAIT FOR 1 >@ TRANSISITON —
A START BIT

WAIT HALF THE TIME, SO
SAMPLING IN THE CENTRE
FULL WAIT TIME BETWEEN
SAMPLES

38
FF 39

3A
3E
41

43

94
CA

Do
20

90
29

Cc9
90

Fo
c9
Fo
BO
A5
AB
A4
49

F6
(8]1)
F6
BO
B5
D@
D6
D6
29
4ac

84
84

0A
AA

49
20
EQ
B@

20 @€

F6

FF
23

QE
80

0E

FB
@c

F2
07

25

6F
06

oF
A
2B

00
@c

o8

o0
02
21
o0
64
45

16
17

F7
19
88
02

15

0E

FE

FF
FF

FE

RESET

INIT

RESTART

RE-ENTER
SEARCH

"“RETURN"

“UP*

“DOWN""

NODEC
ENTERM

FETADD

ASL 1PIA
ROR A
DEY

BNE INPUT
BEQ WAIT

LDX #FF

TXS

STX 1BDDR
STX Z REPEAT
LDY #8p

LDX #@9

STY #, X REPEAT
DEX

BNE ROUND
JSR DISPLAY

BCC INIT
AND #07

CMP #04
BCC FETADD

BEQ LOAD
cMP #06
BEQ "“UP"*
BCS ""DOWN"’
LDA Z R@
LDX Z R1
LDY Z R2
RTI

INC Z.X 00
BNE ENTERM
INC Z,X 91
BCS ENTERM

LDA Z2,X @0
BNE NODEC
DEC Z,X @1
DEC Z.,X 09
JSR QHEXTD1
JMP “MODIFY”

STY 2 D+6
STY 2 D+7

ASL A
TAX

EOR #F7
STAZD

JSR QDATFET
CPX #02

BCS NI

GET SAMPLE AUTO CARRY
AND AUTO A

KEEP GOING

USE WAIT TO GET OUT ONTO THE
THE SHOP BIT HIGH

MAIN PROGRAM

INITIALIZE STACK

AND B DATA DIRECTION REGISTER
MULTI-SCAN DISPLAY MODE

THE FAMILIAR DOT ON THE
DISPLAY

ALL EIGHT DISPLAYS AND
INITIALIZE EXEC

Y USED FOR AMUSEMENT

X ZERO ON EXIT,SO UP & DOWN
IMMEDIATELY VALID

MARK RETURN TO MONITOR POINT
DISPLAY DISPLAY & GET KEY

HEX KEY GETS THE DOTS BACK
REMOVE ANY STRAY BITS
(EFFECTIVELY SUBTRACT 10)

KEYS OF VALUE LESS THAN 4
NEED AN ADDRESS
KEY 4 IS THE LOAD KEY

KEY 8IS UP

& KEY 7 1S DOWN

MUST BE KEY 5 — GET A BACK
GET X BACK

GET Y BACK

GET P & PC BACK & CONTINUE
FROM WHERE YOU WERE

16 BIT INDEXED INCREMENT

A BRANCH ALWAYS : THE CARRY
WAS SET BY THE FF11 COMPARE
16 BIT INDEXED DECREMENT

NOW DISPLAY THE VALUE

AND GET INTO THE MODIFY
SECTION

CLEAR DISPLAYS 6

& 7 — Y WAS ZERO ON EXIT FROM
DISPLAY

DOUBLE A

THE ZERO PAGE ADDRESSES MAP,
GAP, PAP & FAP

FIX UP DIGIT @ COMMAND SYMBOL

FETCH THE ADDRESS, AUTO MAP,
GAP, PAP OR FAP

CHECK X TO FIND OUT WHICH
COMMAND WE’'RE DOING
MUSTBE 2,40R6 —-ASQ IS

9D

9F
FFA3
FFAS

A7
FFEAA

FF AD
FF BY

85
A9
FO
A5
81

20
4c

6C

bE
@C
BC
2]

F8
DD

21
AD

F3
11

@6

18
@0
02
18
]
bE

1C
1E

FE
FE

FF

00

FE

FE

FE
FE

FE

FE
]2
FE

FE

FF

00
]

“MODIFY'" JSR MHEXTD

N1
“GO"
N2

“STORE"

DATAS

"LOAD""
ADDRSL

DATAL

“POINT"

SET

ouT

WAYOUT
NMI
IRQ

JSR DISPLAY
BCS SEARCH
LDA (99, X)
ASL A

ASL A

ASL A

ASL A

ORA Z KEY
STA (@9, X)
JMP “MODIFY"
BNE N2

JMP (GAP)

CPX #04

BEQ POINT
LDX #08

STXZD
JSR QDATFET
LDX #04

LDA Z,X @5
JSR PUTBYTE
DEX

BNE ADDRESS
LDA (96, X)

JSR PUTBYTE
JSR COM16
BNE DATAS
BEQ WAYOUT
LDX #04

JSR GETBYTE
STA Z.,X 95

DEX

BNE ADDRSL
JSR GETBYTE
STA (06, X)
STA 1PIB

JSR COM16
BNE DATAL
BEQ WAYQOUT
LDA (90, X)

BEQSET

STAZP
LDA #00

BEQ OUT
LDAZP

STA (80, X)
JSR MHEXTD
JMP RESTART

JMP (USERNMI)
JMP (USERIRQ)

DISPLAY THE MEMORY
AND GET KEY

IF NOT HEX DO OVER
HEX SO GET OLD INFO

MOVED ALONG

AND PUT IN NEW INFO
AND PUT IT BACK

THEN KEEP DOING IT
MUSTBE40OR6AS 2 1S
THE VERY SIMPLE GO

ISIT 40R 6?7

WELL IT'S NOT 4

SO IT MUST BE 6 — X NOW POINTS
TO TAP

GIVE PROMPT

AND GET 2ND STORE INFO
LOOP COUNT

SEND ADDRESSES TO TAPE

X NEATLY ZEROED ON EXIT
DATA SEND — GET INFO FROM
MEMORY

AND SEND IT TO TAPE

SEE IF PRINTED

NO

YES

RESCUE ADDRESSES FROM TAPE
PUT THEM IN FAP & TAP, THOUGH
IT COULD BE ELSEWHERE

X NEATLY SERVED AGAIN

GET DATA FROM TAPE

AND STORE IT IN MEMORY

AND ON THE DISPLAY SO IT CAN BE
SEEN

SEE IF FINISHED

NO

YES

SET/CLEAR BREAK POINT — GET
DATA FROM ADDRESSED MEMORY
IF ZERO BREAK POINT HAS
ALREADY BEEN SET = MUST CLEAR
IT

NOT ZERO SO SAVE THE
INFORMATION

AND PUT IN A BREAK POINT

WAS SET SO GET OLD
INFORMATION BACK

INSERT BREAK POINT OR OLD
INFORMATION

NOW READ IT OUT AGAIN TO
REVEAL ROM

GO BACK & DO IT ALL OVER AGAIN
INDIRECTION ON NM}
INDIRECTION ON IRQ

FFB3 85 0A BREAK STA Z RO — WHEN THE IRQ/BREAK VECTOR
POINTS HERE THEN DISPLAY
DISPLAY EVERYTHING — SAVE A
B5 86 0B STX Z R1 — SAVE X
B7 84 @C STY 2 R2 — SAVEY
B9 68 PLA — GET P OFF STACK
BA 48 PHA — PUT IT BACK FOR FUTURE USE
BB 85 @D STA ZR3 — STORE QIN REGISTER 3
BD A2 0D LDX #R3 — SET X TO POINT AT REGISTERS
3@ FOR QUAD
BF A9 FF LDA # FF — KILL POSSIBILITY OF DISPLAY
BEING ON SINGLE SCAN
C1 85 @& STA Z REPEAT
C3 20 00 FE JSR QUAD — USE QUAD TOWRITEQUTAXYP
C6 BA TSX —~ GET STACK POINTER
C7 86 13 STX Z R7
c9 «cs8 INY — Y ZERO SINE QUAD ENDED WITH
DISPLAY SO THIS FORMS @1
CA 84 12 STY Z R6
CC D8 CLD — CLEAR DECIMAL MODE FOR BINARY
SUBTRACT — DOESN'T AFFECT
USER SINCE P IS STACKED
CD BD 92 @1 LDA,X @12 — GET PCL OFF STACK -
D@ 38 SEC
D1 E5 1F SBCZ RECAL — CORRECT IT BY AMOUNT IN RECAL
D3 9D @2 @1 STA,X @192 — PUT IT BACK ON STACK
D6 85 11 STAZ R5 — AND STORE IT FOR QUAD
D8 BD 93 o1 LDA, X 9193 — PCH OFF STACK
DB E9 00 SBC #00 — REST OF TWO BYTE SUBTRACTION
DD 9D @3 o1 STA, X 0183 — PUT IT BACK ON STACK
E@ 85 10 STAZ R4 — AND STORE IT FOR QUAD
E2 A2 13 LDX #R7 ~ POINT X AT THESE REGISTERS —
QUAD WILL DESTROY THEM
E4 20 00 FE JSR QUAD — QUAD WRITES OUT PC SP
FFE7 4C 07 FF JMP RE-ENTER — AND THE WHOLE SHEBARG STARTS
OVER AGAIN
FFEA 3F 06 5B 4F FONT ‘01203 — 7 SEGMENT FORMS OF THE HEX
DIGITS
EE 66 6D 7D @7 ‘4" 5" 6" ‘7’
F2 7F BF 77 7C ‘89" ‘A’ ‘b’
F6 58 B5E 79 71 e 'd’'E"'F’
FFFA AD FF NMIVEC NMI — POINT TO THE ADDED INDIRECTION
FFFC F3 FE RSTVEC RESET — POINT TO THE RESET ENTRY POINT
FFFE B® FF IRQVEC IRQ — POINT TO THE ADDED INDIRECTION

PART 2
APPLICATION PROGRAMS
MATHEMATICAL
1. SQUARE ROOT (HEX. OR DECIMAL)
2. DIVIDE (HEX. OR DECIMAL)
3. SINGLE BYTE MULTIPLY
4. DOUBLE BYTE MULTIPLY
SYSTEM
. DECIMAL TO HEX.
. HEX.TO DECIMAL
. BRANCH OFFSET CALCULATOR
. RELOCATOR
. TAPE USE PROGRAMS
. SCROLL
GAMES
1. NIM
2. DUCK SHOOT
MISCELLANEOUS
1. COUNTER
2. KEYBOARD COUNTER ROUTINE
3. METRONOME
4. EIGHT QUEENS PROBLEM

GENERAL

THESE APPLICATIONS PROGRAMS ARE INTENDED TO DEMONSTRATE SOME
OF THE CAPABILITIES OF THE SYSTEM AND OF THE PROCESSOR. THEY HAVE
BEEN DESIGNED FOR CLARITY AND SIMPLICITY AND IN MANY CASES ARE
NOT OPTIMAL EITHER IN TERMS OF LENGTH OF PROGRAM OR OF EXECUTION
TIME. THEY ARE INTENDED SIMPLY TO GIVE YOU A FEEL FOR THE SYSTEM
AND SOMEWHERE TO START OFF FROM.

ALL PROGRAMS MARKED RELOCATABLE CAN BE ENTERED ANYWHERE IN
AVAILABLE MEMORY, SUBJECT TO NOT IMPINGING IN VARIABLE STORAGE
SPACE FOR EITHER THE PROGRAM OR MONITOR AND NOT USING SPACE
NEEDED BY THE STACK. (FOR STACK USAGE SEE RELEVANT SECTIONS OF
PART 1 OF THIS MANUAL.)

AS FAR AS HAS PROVED POSSIBLE THE CONVENTION OF A XX G0@® XX
PROMPT FOR THE FIRST NUMBER TO BE ENTERED AND XX 1111 XX FOR THE
SECOND HAS BEEN OBSERVED IN THESE PROGRAMS. AFTER ENTERING A
NUMBER CHECK THAT IT IS CORRECT AND THEN PRESS A CONTROL KEY
{ANY ONE WILL DO) TO PROGRESS THROUGH THE PROGRAM.

YOU SHOULD NOW BE READY TO TYPE IN THE PROGRAMS AND RUN THEM,
BOTH TO ASSURE YOURSELF THAT THE SYSTEM IS OPERABLE AND TO
FAMILIARISE YOURSELF WITH ITS OPERATION.

THROUGHOUT THESE NOTES X INDICATES AN UNDEFINED/UNIMPORTANT

CHARACTER.
MOST OF THE PROGRAMS WERE WRITTEN BY MARK I’ANSON, THANK YOU

MARKI.

MATHEMATICAL PROGRAMS
ALL THESE ROUTINES RESET THEMSELVES WHEN A CONTROL KEY IS PRESSED
AFTER THE NUMBER HAS BEEN OBTAINED. THEY MAY ALL BE USED AS SUB

OB WN =

ROUTINES BY ENTERING THE SECTION OF PROGRAM FROM THE TITLE LABEL
(E.G.DIVIDE) TO THE RESULT LABEL AND SUBSTITUTING THE LINE

60 RESULT RTS
ALL ARE RELOCATABLE.

SYSTEM PROGRAMS

THESE PROGRAMS ARE ALL SHORT ROUTINES WHICH CAN PROVE USEFUL
TIME SAVERS AT THE DEVELOPMENT AND INPUT STAGES OF PROGRAM
WRITING.

IT MAY BE FOUND USEFUL TO KEEP COPIES OF THEM ON TAPE AND TO HAVE
THEM IN THE ACORN AND BESIDE YOU WHILE DEVELOPING PROGRAMS.
BRANCH CALCULATIONS IN PARTICULAR ARE A FERTILE SOURCE OF
ERRORS AND TIME WASTING IN ANY HAND ASSEMBLED PROGRAM.

THE RELOCATOR WILL MOVE PROGRAMS AROCUND MEMORY FOR YOU. A
GODSEND TO ANYONE WHO FINDS THEMSELVES WITH THE NEED TO
REENTER LARGE CHUNKS OF CODE MANUALLY.

MISCELLANEOUS

THIS IS A SELECTION OF PROGRAMS AND ROUTINES INCLUDED BECAUSE
THEY ARE INTERESTING, ELEGANT OR IMPORTANT. THEY SHOW SOME OF

OF THE THINGS THAT CAN BE DONE WITH THE SYSTEM, WHICH MAY BE MORE
THAN YOU IMAGINE. WE HAVE, FOR INSTANCE, RUN A CHESS GAME IN THE 1K
SYSTEM.

IN PARTICULAR THE METRONOME AND COUNTER PROGRAMS ARE INTENDED
TO DEMONSTRATE SOME OF THE USES OF THE KEYBOARD. IN ORDER TO
UNDERSTAND WHAT IS GOING ON WITH THESE PROGRAMS YOU WOULD BE
WELL ADVISED TO STUDY THE MONITOR LISTING AND PART 1 OF THIS
MANUAL.

MATHEMATICAL
THE SQUARE ROOT PROGRAM WILL CALCULATE EITHER DECIMAL OR HEXA-
DECIMAL SQUARE ROOTS ACCORDING AS CLD (FOR HEX) OR SED (FOR
DECIMAL} IS ENTERED AS THE FIRST LINE. IN EITHER CASE THE PROMPT
WILL BE XX0@@GXX . THE SQUARE SHOULD BE ENTERED, A CONTROL KEY
PRESSED AND THE ROOT WILL APPEAR ON THE DISPLAY.
THE PROGRAM IS BASED ON THE EQUALITY

({N+1)%(N+1)})—(N*N)=(2%N}+1
AND SUCCESIVELY SUBTRACTS 1,3,7,9 ETC. FROM THE SQUARE. WHEN THE
RESULT OF A SUBTRACTI!ON GOES NEGATIVE THE NUMBER OF SUBTRACTIONS

DONE TO DATE IS THE ROOCT.
HEX/DEC sQ ROOT.

ADDR HEX LABEL INSTRUCTION COMMENTS RELOCATABLE
CODE

@200 F8 OR D8 SED (OR CLD) — SETDECIMAL (BINARY) OPERATING

9201 84 21 STY Z SQH — CLEAR SQUARE TO PROMPT

0203 84 20 STY ZsaL

0205 A2 20 LDX #saL

0207 20 88 FE JSR QDATFET — FETCH THE NO.WHOSE ROOT IS TO
BE FOUND

020A 84 24 STY Z SUBH — CLEAR HIGH PART OF
SUBTRACTING NO.

@20C 84 22 STY 2 ROOT — CLEAR ROOT

020E c8 INY

ADDR

B20F
0211

9213
9215
0216
0217
09219
021A
0218
921D
021E
0220

9222
9224
0226
0228
922A
@22C
022E
023¢
0232

0234
9236
9239
0248

HEX
COD
84

A4

A6
38
98
EB
A8
8A
EB
AA
o0
A8

65
85
Ab
69
85
A5
69
85
90

A5
29
ac

E
23

20

21

23

24

14
oo

22
22
23
92
23
24
00
24
E1

22
60
04

LABEL

NXTSUB

RESULT
FE
FF

INSTRUCTION

STY ZSUBL
LDY ZSQL

LDX Z SQH
SEC

TYA

SBC Z SUBL
TAY

TXA

SBC Z SUBH
TAX

BCC RESULT
LDA# 00

ADC Z ROOT
STA 2 ROOT
LDA ZSUBL
ADC #02
STA ZSUBL
LDA Z SUBH
ADC #00
STA Z SUBH
BCC NXTSUB

LDA Z ROOT
JSR DHEXTD
JMP RESTART

COMMENTS

SUBTRACT 9091 AT START
USE Y & X AS DOUBLE SIZED
ACCUMULATOR

SUBTRACT SUB FROM X & Y

IF NEGATIVE THEN STOP
NOT FINISHED YET. INCREMENT
ROOT

INCREMENT SUB

THERE CAN BE NO CARRY:
BRANCH ALWAYS

DISPLAY ANSWER

THE DIVIDE ROUTINE WILL CALCULATE THE INTEGER RESULT AND
REMAINDER OF A FOUR DIGIT NUMBER DIVIDED BY A TWO DIGIT NUMBER.
BY ENTERING CLD (FOR HEX.) OR SED (FOR DECIMAL) EITHER BASE MAY BE
USED, SINCE IT WORKS BY SUBTRACTING THE DIVISOR SUCCESSIVELY FROM
THE DiVIDEND. THE ROUTINE PROMPTS WITH XX@@@@XX FOR THE DIVIDEND
AND THEN XXXX11XX FOR THE DIVISOR. THE ANSWER WILL APPEAR IN
THE FORM ABCD.EF WHERE ABCD IS THE INTEGER RESULT AND EF IS THE

REMAINDER.
DIVIDER
ADDR HEX LABEL
CODE
0200 D8 OR F8
0201 84 20
9203 84 21
0205 A9 11
0207 85 22
0209 A2 20
0208 20 88 FE
020E A2 22
@210 2¢ 88 FE
9213 84 24
9215 84 25

INSTRUCTION

CLD ORSED

STY Z 2¢ DIVIDED

STY 2 21
LDA #11

STA Z 22 DIVISOR

LDX #20
JSR QDATFET
LDX #22
JSR QDATFET

COMMENTS

|

STY 224 RESULT —

STYZ25

BINARY (DECIMAL) OPERATION
CLEAR DIVIDEND — PROMPT FOR
NUMBER

PROMPT FOR SECOND NUMBER

FETCH DIVIDEND

FETCH DIVISOR
CLEAR RESULT

ADDR HEX LABEL INSTRUCTION COMMENTS
CODE

0217 A4 29 LDY Z 20 — USE Y & X AS DOUBLE

ACCUMULATOR

@219 A6 21 LDX Z 21

p218 38 SUBSEC)

@21Cc 98 TYA

@210 E5 22 SBC 222 3 — SUBTRACT THE DIVISOR

@21F A8 TAY

0220 8A TXA

0221 E9 00 SBC #00

0223 AA TAX %

0224 99 10 BCC RESULT — IF NEGATIVE THEN FINISHED

0226 84 23 STY 223 — ELSE UPDATE THE REMAINDER

0228 A5 24 LDAZ24)

922A 69 0D ADC #00

922C 85 24 STAZ24 > — AND ADD ONE TO THE RESULT

@022E A5 25 LDA Z 25 (CARRY WAS SET ON INPUT).

9230 69 00 ADC #00

9232 85 25 STAZ25 /

9234 90 E5 BCC SUB — NO CARRY 1S POSSIBLE (USUALLY)

0236 A2 24 RESULT LDX #24

9238 20 64 FE JSR QHEXTDI — DISPLAY RESULT

@238 A5 23 LDA Z 23

23D 20 60 FE JSR RDHEXTD — AND REMAINDER

0249 4C @4 FF JMP RESTART

0242

THE TWO MULTIPLY ROUTINES ARE FOR SINGLE AND DOUBLE BYTE BINARY
MULTIPLICATION. THE FIRST PROMPTS XX@011XX AND THE TWO NUMBERS
TO BE MULTIPLIED SHOULD BE ENTERED SEQUENTIALLY. (E.G. 1234 WOULD
GIVE 12 X 34). THE SECOND PROMPTS XX@@@@XX FOLLOWED BY XX1111XX
FOR THE TWO NUMBERS. ANSWERS ARE, AS USUAL, DISPLAYED AFTER A
CONTROL KEY HAS BEEN PRESSED.
BOTH ARE BASED ON AN EQUIVALENT TO THE NORMAL METHOD OF LONG
MULTIPLICATION,

E.G.

SINGLE BYTE MULTIPLY

ADDR

0200
@202

0204
0206

HEX

LABEL

CODE

D8
84

A9
85

20

11
21

11019
00110
0000000000
Go00e0000
1101000
110100
L)
10011100

INSTRUCTION

CLD
STY 220

LDA #11
STA Z 21

—(@Xx2% X 11010
—{@Xx2%) X11010
—(1X2%) X 11010

- (1X2)

X 11010

—(@X 2% X 11010

COMMENTS

— SET UP PROMPT FOR ZERO ~

— PROMPT FOR FIRST — MULTIPLICAND

MULTIPLIER

ADDR HEX LABEL
CODE

0208 A2 20

020A 20 88 FE

0200 98

020E AQ 08

0210 66 20 LOOP

0212 90 03

9214 18

9215 65 21

0217 6A NAD

9218 88

0219 D@ F5

9213 85 21

921D 66 20

921F 20 64 FE

9222 20 64 FF

0224

DOUBLE BYTE MULTIPLY

ADDR HEX LABEL
CODE
0200 D8

@201 84 20
0203 84 21 }
0205

0207 8 22
@209 85 23 }
@208 A2 20
020D 20 88 FE
0210 A2 22
9212 20 88 FE
0215 84 24
9277 84 25
0219 AQ 10

@218 66 23 LOOP
921D 66 22

021F 99 @D

9221 18

0222 A5 20

0224 65 24

0226 85 24

0228 A5 21

022A 65 25

022C 86 25

@922€ 66 25 NAD

0239 66 24
9232 88
0233
0235 66 23
09237 66 22
9239 AD 06
8238 20 66 FE

023E AD @2

INSTRUCTION

LDX #20

JSR QDATFET
TYA

LDY #08
ROR 220

BCCNAD
CLC
ADC Z 21

ROR A

DEY

BNE LOOP
STAZ 21

ROR 229

JSR QHEXTD
JMP RESTART

INSTRUCTION

CLD

STY Z 20 MPIER

STYZ 21
LDA #11

COMMENTS

FETCH THE NUMBERS

CLEARS A

LOOP COUNTER

SHIFT MULIPLIER (AND HIGH BYTE
OF RESULT)

NO ADD tF NO BIT

ADD MULTIPLICAND INTO LOW
BYTE OF RESULT
AND SHIFT LOW BYTE OF RESULT

PUT IN LOWBYTE
FINAL JUSTIFICATION SHIFT
DISPLAY ANSWER

COMMENTS

STA 222 MPICAND —

STA Z23
LDX #20

JSR QDATFET
LDX #22

JSR QDATFET
STY Z 24

STY 225

LDY #10
ROR Z 23
ROR Z 22
BCCNAD

cLC

LDA Z 20
ADC Z 24
STAZ 24

LDA Z 21

ADC Z 25
STAZ 25

ROR Z 26
ROR Z 24
DEY

BNE LOOP
ROR Z 23
ROR Z 22
LDY #@6

JSR QHEXTD2

LDY #02

BINARY ONLY
FORM PROMPT FOR THE ZERO
INPUT

FORM PROMPT FOR THE FIRST
INPUT

FETCH ZERO INPUT

AND FIRST INPUT
CLEAR WORKING SPACE

LOOP COUNT INITIALISATION
TWO BYTE SHIFT RIGHT

NO ADD IF THE O/P BIT ISN'T A ONE

TWO BYTE ADD

NO CARRY OUT OF THE ADD
SHIFT AGAIN

GO ROUND LOOP 16 TIMES
FINAL SHIFT ON RESULT

SET UP POSITION

X ALREADY POINTING AT
CORRECT LOCATIONS — PUT 4 HEX
ouT

NEXT POSITION

ADDR HEX LABEL INSTRUCTION
CODE

02490 A2 24 LDX #24

0242 20 66 FE JSR QHEXTD2

0245 AC @4 FF JMP RESTART

0247

SYSTEM

COMMENTS

— SET UP X
— PUT NEXT 4 OUT
— DISPLAY RESULT

THE DECIMAL TO HEX CONVERTER WILL PROMPT WITH @XXXX FOR THE
FIRST DIGIT OF THE 5 DIGIT DECIMAL NUMBER. THEN X0@@®. FOR THE LAST
FOUR DIGITS OF THE DECIMAL NUMBER. CLEARLY ANYTHING OVER 65535
WILL GIVE THE REMAINDER WHEN DIVIDED BY 19@@@ HEX. TO ENTER THIS
NUMBER YOU WOULD KEY 6, CONTROL KEY, 55635, CONTROL KEY, AND FFFF
WILL APPEAR ON THE DISPLAY (AFTER A SLIGHT DELAY!)

THE PROGRAM WORKS BY A PROCESS OF DECREMENTING THE DECIMAL
NUMBER AND THEN INCREMENTING THE HEX. NUMBER.

DEC-HEX

9200 98 TYA

9201 85 20 STA ZDECL
9203 85 21 STA Z DECH
0205 A2 20 LDX #DECC
@207 85 22 AGAIN STA Z DECVH
9209 20 7A FE JSR HEXTD
@20C 20 OC FE JSR DISPLAY
@20F 99 F6 BCC AGAIN
@211 20 88 FE JSR QDATFET
@214 F8 SED

9215 84 10 STYZD

@217 AB 21 LDX Z DECH
9219 98 TYA

@21A 85 21 STA Z DECH
021C A4 20 LDY Z DECL
021E 85 20 STA Z DECL
9220 38 NEXT SEC

@221 98 ALSO TYA

0222 £9 o1 SBC #01

9224 A8 TAY

9225 8A TXA

0226 E9 00 SBC #00
9228 AA TAX

9229 B0 04 BCS NODEC
9228 c6 22 DEC Z DECVH
@22D 30 @9 BMI RESULT
Q22F E6 20 NODEC INC Z DECL
9231 DO ED BNENEXT
0233 E6 21 INC 2 DECH
9235 38 SEC

0236 B® E9 BCS ALSO
9238 A2 20 RESULT LDX #20
923A 20 64 FE JSR QHEXTD
923D 4C 04 FF JMP RESTART

@23F

— CLEARA
— CLEARNO

~ FETCH THE FIRST DIGIT

AND THEN THE LAST FOUR DIGITS
DECIMAL MODE

CLEAR LEFT DISPLAY

X & Y AS DOUBLE ACCUMULATOR

CLEAR AREA FOR RESULT

—~ DO A DECIMAL SUBTRACT, DOUBLE
BYTE

— LAST OF THE DECIMAL SUBTRACT,
TO DO 5 DIGITS

— IF MINUS THEN FINISHED

— DOUBLE HEX INCREMENT

CREATE BRANCH ALWAYS, BUT
DON'T BOTHER TO SET THE CARRY
TWICE

— DISPLAY RESULT

THE HEXADECIMAL TO DECIMAL CONVERTER PROMPTS WITH XX@@@@XX
AND AFTER A CONTROL KEY IS PRESSED WILL PROVIDE AN ANSWER IN THE

THE PROGRAM WORKS BY DECREMENTING THE HEX. NUMBER AND
INCREMENTING THE DECIMAL NUMBER UNTIL THE HEX. NUMBER REACHES

ZERO.

THIS PROGRAM, LIKE THE DECIMAL TO HEX. CONVERTER, WHICH USES
VIRTUALLY THE SAME METHOD, ILLUSTRATES THE USE OF THE

DECIMAL MODE, AN IMPORTANT FACET OF THIS PROCESSOR.

THEY ALSO PROVIDE AN EXCELLENT DEMONSTRATION OF THE TRADEOFF
FREQUENTLY FOUND BETWEEN PROGRAM LENGTH AND SIMPLICITY, AND
PROGRAM EXECUTION TIME. THE METHOD USED IS BOTH SHORT AND SIMPLE,
BUT CAN TAKE UP TO THREE SECONDS FOR SOME CALCULATIONS. A MUCH
LONGER AND MORE COMPLEX (RELATIVELY} PROGRAM COULD HAVE BEEN
WRITTEN BASED ON ABCD = A(16*16+16)+B{16+*16)+C(16}+D AND WOULD HAVE
BEEN VIRTUALLY INSTANTANEOUS.

HEX -~ DEC

ADDR HEX LABEL
CODE

9200 84 2¢

0202 84 21

8204 A2 20

0206 20 88 FE

0209 F8

020A A2 00

920C 86 22

020E A5 29 DECRHEX

0210 DO 06

9212 A5 21

0214 FQ@ 13

0216 c6 21

@218 C6 20 NODEC

@21A 18

@218 98

921C 69 01

@21E A8

921F 8A

9220 69 00

@222 AA

9223 90 E9

@225 E6 22

@227 B E5

9229 84 2¢p DEAD

9228 86 21

@22D A2 20

@22F 20 64 FE

©232 88

©233 A5 22

9235 20 7A FE

9238 4C @04 FF

@23A

INSTRUCTION

STY 2 HEXL
STY Z HEXH
LDX #HEXL
JSR Q DATFET
SED

LDX #00

STX Z DECOUT
LDA 2 HEXL
BNE NODEL
LDA Z HEXH
BEQ DEAD
DEC Z HEXH
DEC 2 HEXL
cLC

TYA

ADC #01

TAY

TXA

ADC #09

TAX

BCC DECRHEX
INC Z DECOUT
BCS DECRHEX
STY Z HEXL
STX Z HEXH
LDX #HEXL
JSR QHEXTD1
DEY

LDA Z DECOUT
JSR HEXTD
JMP RESTART

7

COMMENTS

SET UP ZERO PROMPT

AND FETCH THE DATA

DECIMAL MODE

SET X & Y & DECOUT TO ZERO
TEST FOR ZERO,THEN DECREMENT

IF HEX NO. ISZERO, THEN FINISHED

ADD 1 TO THE DECIMAL NUMBER,
USING X & Y ASTWO BYTE
ACCUMULATOR

FINISHED,SO STORE X & Y

DISPLAY 4 DIGITS

DISPLAY 5 DIGIT

THE OFFSET CALCULATOR CALCULATES THE OFFSET TO BE ENTERED AS
THE SECOND BYTE OF A BRANCH INSTRUCTION. IT WILL PROMPT WITH
XX0B@3XX AND YOU SHOULD ENTER THE ADDRESS OF THE BRANCH
INSTRUCTION. AFTER A CONTROL KEY IT WILL PROMPT AGAIN WITH
XX1111XX AND YOU SHOULD ENTER THE ADDRESS YOU WISH TO BRANCH
TO. THE REPLY WILL BE EITHER “OFFSET XX’ WHERE XX IS THE VALUE TO
BE ENTERED, OR “TOO FAR" IF THAT IS THE CASE. A CONTROL KEY

RESTARTS THE SEQUENCE.

OFFSET CALCULATOR

ADDR HEX LABEL
CODE

@200 D8

@2 A9 02 AGAIN

@203 85 21

@205 84 22

@207 84 23

@200 A2 22

0208 20 88 FE

@20E A9 11

9219 85 24

9212 85 25

@214 A2 24

9216 20 88 FE

9219 A5 22

9218 E9 7E

921D 86 22

@21F BO @3

9221 c6 23

9223 38

9224 Ab 24 HSUB

9226 ES 22

9228 AA

9229 Ab 25

922B E5 23

9220 D@ OE

022F A9 51

0231 20 44 @2

0232 8A

9235 49 89

9236 20 6p FE

9239 4C @4 FF

@23C A8 57 TOOFAR

923E 20 44 @2

9241 c 01 92

0244 85 20 MESSAGE

0246 AD 07

3248 B1 2¢ LOOP

@24A 99 10 00

924D 88

@24E 19 F8

0250 60

09251 5C 71 71

9254 ED 79 78

0257 78 5C 5C

INSTRUCTION

CcLD
LDA #02

STA MESSH
STY FROMH
STY FROML
LDX #FROML
JSR QDATFET
LDA #11
STATOL

STA TOH

LDX #TOL
JSR QDATFET
LDA FROML

SBC #7E
STA FROML
BCS HSUB
DEC FROMH
SEC

LDA TOL
SBC FROML
TAX

LDA TOH
SBC FROMH
BNE TOOFAR
LDA #51

JSR MESSAGE
TXA

EOR #80¢

JSR RDHEXTD

JMP RESTART
LDA #57
JSR MESSAGE

JMP AGAIN
STA MESSL
LDY #07

LDA (MESSL), Y
STAD, Y

DEY

BPL LOOP

RTS

NOT RELOCATABLE

COMMENTS

INITIALIZE MESSAGE POINTER
SET UP PROMPT

FETCH FIRST ADDRESS
SET UP 2ND PROMPT

FETCH SECOND ADDRESS
OFFSET TO MAKE OVERLENGTH
EASY

CARRY KNOWN SET BY QDATFET

DON'T SET THE CARRY AGAIN!

CALCULATE THE LENGTH

PRINT OUT

COMPLEMENT TOP BIT BECAUSE OF
THE OFFSET APPLIED

PRINT OUT ANSWER, OVER
WRITING THE

FINISHED

WHOOPS

TELL THE PROGRAMMER THAT IT'S
WRONG

AND GET IT DONE AGAIN

MESSAGE DESCRIBED BY A

EIGHT BYTES OF DATA TO DISPLAY
FETCH THEM

THE DATA

@25A 00 71
025D 50 @0
P25F

77

THE RELOCATOR FIRST FETCHES THE THREE ADDRESSES IT REQUIRES, THE
ADDRESSES OF THE START & END OF THE MEMORY SECTION TO BE MOVED,
AND THE ADDRESS OF THE START OF THE AREA TO WHICH THE MOVE IS TO

TAKE PLACE. THE PROMPTS ARE F.,

& t RESPECTIVELY. AFTER

TERMINATING THE LAST ADDRESS, THE MOVE TAKES PLACE. MOVES UP BY
LESS THAN THE LENGTH OF THE MATERIAL TO BE USED WILL NOT BE

SUCCESSFUL (1.LE. t—F ., IF POSITIVE, SHOULD BE GREATER THAN

RELOCATOR
ADDR HEX
CODE
woe A2 F1
@202 86 10
0204 A2 29
@206 20 88

0209 A2 46
0208 86 10
920D A2 22
@20F 20 88

9212 A2 78
9214 86 19
0216 A2 24
9218 20 88

921B A2 1A
921D Al @6
921F 91 24

0221 cs

0222 DO @2
0224 E6 25
0226 20 A0
9229 D@ F2
0228 4C 04

22D

LABEL

FE

FE

FE

MOVE

FE NOINC

FF

INSTRUCTION

LDX #F1
STXZD

LDX #20

JSR QDATFET
LDX #46
STXZD

LDX #22

JSR QDATFET

LDX #78
STXZD

LDX #24

JSR QDATFET

LDX #1A
LDA (06,X}
STA (24,Y)
INY

BNE NOINC
INC Z 25

JSR COM16
BNE MOVE
JMP RESTART

—t)

COMMENTS

SET UP FROM PROMPT F.

AND GET ADDRESS

SET UP END PROMPT

AND GET SECOND ADDRESS —
MOVE THE DATA BETWEEN THESE
ADDRESSES

SET UP TO PROMPT

AND GET BASE ADDRESS — MOVE
TO HERE & SUCCESSIVE
LOCATIONS

DO THE MOVE

INCREMENT THE TO ADDRESS

USE COM16 TO DO THE LIMIT TEST

THE FIRST PROGRAM, TEST, IS TRIVIAL: IT JUST SENDS A PARTICULAR BYTE
TO TAPE REPETETIVELY.IT MUST BE STOPPED BY RESET. RECORD A FEW
MINUTES OF THIS, THEN LOAD IT USING LOAD. DEVIATIONS FROM THE
STATIONARY PATTERN ARE EASY TO SEE. THE SECOND PROGRAM, RETAG,
IS RELOCATABLE. IT ACTS JUST LIKE THE MONITOR’'S STORE ROUTINE,
EXCEPT THAT IT ASKS FOR AN EXTRA ADDRESS. THE DATA WHICH IS
STORED IS THAT STARTING AT THIS LAST ADDRESS, IT PRETENDS TO BE
SITUATED BETWEEN THE FIRST TWO ADDRESSES. INCORPORATE THE
REQUIRED STATE OF ZERO PAGE REGISTERS IN FRONT OF YOUR DATA,
THEN ‘LOAD AND AUTO RUN’' PROGRAMS MAY BE CREATED.

TAPE PROGRAMS NOT RELOCATABLE
ADDR HEX LABEL INSTRUCTION COMMENTS
CODE

0200 A9 55 TEST LDA #5656 — THE TEST BYTE

@202 20 B1 FE JSR PUTBYTE — SENDIT

9205 4C 00 @2 JMP TEST — KEEP SENDING IT

0208 A9 F1 RETAG LDA #F1 — F.PROMPT

@20A 85 10 STAD

@20C A2 06 LDX #06

@20E 20 88 FE JSR QDATFET —~ FIRST ADDRESS

9211 A2 @8 LDX #08

@213 86 10 STX D - PROMPT

@215 20 88 FE JSR QDATFET — SECOND ADDRESS

9218 A9 46 LDA #46 - PROMPT

021A 85 10 STAD

921C A2 20 LDX #20

@21€ 20 88 FE JSR QDATFE7 — LAST ADDRESS: ACTUAL DATA
START

9221 A2 04 LDX #04

9223 B5 @5 ADRSS LDA Z,X @5 — SEND FAKE ADDRESSES

9225 2¢ B1 FE JSR PUTBYTE

@228 CA DEX

9229 D@ F8 BNE ADDRSS

9228 AD 00 DATAS LDY #00

@22D B1 20 LDA (20),Y — PROPER DATA

@22F E6 20 INC 20 — INCREMENT PROPER DATA
COUNTER

9231 D@ 02 BNE NOINC

9233 E6 21 INC 21

9235 20 B1 FE NOIINC JSRPUTBYTE — SEND DATA

9238 20 A® FE JSR COM16 — CHECK FAKE ADDRESSES FOR END

@238 D@ EE BNE DATAS

923D 4C 04 FF JMP RESTART

0240

THE SCROLL PROGRAM SHIFTS THE WHOLE DISPLAY ONE LEFT, AND
ENTERS THE NEW INFORMATION, IN A, ON THE FAR RIGHT.
SCROLL

ADDR HEX LABEL INSTRUCTION COMMENTS

- CODE
0200 A2 00 LDX #@0 — MUST GO FORWARDS
0202 B4 11 LOOP LDY ZX D + 1 — PICK-UP DATA ON RIGHT
0204 94 10 - STY ZX D — & MOVE IT ONE LEFT

0206 E8 INX

ADDR HEX LABEL INSTRUCTION COMMENTS

CODE
0207 E® 07 CPX #¢7
0209 D F7 BNE LOOP — KEEP GOING
0208 85 17 STAZD+7 — NEW DATA
920D 60 RTS.
020E
GAMES PROGRAMS

1

NIMIS ATRADITIONAL GAME INWHICH THE PLAYERS ALTERNATIVELY REMOVE
STICKS, OR COINS, OR WHATEVER FROM ONE OF SEVERAL STACKS. THE
ONLY RULES ARE THAT YOU MUST TAKE AT LEAST ONE PIECE PER MOVE
AND THAT YOU CAN ONLY REMOVE PIECES FROM ONE STACK PER MOVE.
THERE ISAWELL-DEFINED STRATEGY FOR OPTIMAL PLAY BUT THIS DOES
NOT GUARANTEE AWIN UNLESS THE OPPONENT MAKES A MISTAKE OR THE
INITIAL SITUATION IS AGAINST HIM. THE COMPUTER PLAYS WELL BUT,WITH
LUCK, CAN BE BEATEN. THE WINNER IS THE PLAYER WHO REMOVES THE
LAST PIECE

IN THIS VERSION OF THE GAME THERE ARE FOUR STACKS OF FROM @§—F
PIECES. YOU MUST ENTER THE SIZE OF YOUR STACKS IN MEMORY O
LOCATIONS 2¢—23 BEFORE STARTING THE GAME. THE GAME STARTS AT-§@2F
AND YOUR MOVE OR%T@@?AND THE COMPUTER’S MOVE. ON RUNNING, THE
DISPLAY WILLSHOW A- B C DWHERE AB,C,.D ARE THE CONTENTS OF
THE STACKS. ANY CONTROL KEY WILL MOVE THE POINTER (FULL STOP)
AROUND THE STACKS. WHEN IT POINTS TO THE STACK FROM WHICH YOU
WISH TO REMOVE PIECES PRESS THE KEY CORRESPONDING TO THE NUMBER
YOU WISH TO REMOVE. ZERO IS ILLEGAL AND WILL NOT BE ALLOWED. IF
YOU SUBTRACT MORE PIECES THAN ARE IN THE STACK THE GAME WILL GET
VERY CONFUSED.

AFTER REMOVAL OF PIECES THE DISPLAY WILL SHOW THE CURRENT
SITUATION AND THE COMPUTER WILL MAKE ITS MOVE,

CONTINUE UNTIL SOMEONE (SOMETHING?) WINS.

YOU MIGHT LIKE TO TRY AND WRITE SUBROUTINES TO PRINT MESSAGES

ON THE DISPLAY IN THE EVENT CF EITHER A HUMAN OR COMPUTER
VICTORY. A CHECK WOULD HAVE TO BE INSERTED TO DECIDE A

COMPUTER WIN BUT THE JUMP FOR A HUMAN WIN IS ALREADY THERE
UNDER THE MNEMONIC JMP MESSAGE, THOUGH THE CODE IN FACT JUMPS
TO THE HUMAN MOVE.

NIM NOT RELOCATABLE
— CLEAR DECIMAL

0200 290 99 @2 HUMMOV JSR DSPGAP — DISPLAY STACKS

9203 B5 11 SHIFTPT LDZXD+1 — SET DECIMAL POINT ON

9205 @9 89 ORA #80

9207 95 11 STAZX D + 1

9209 20 @OC FE CHEAT JSR DISPLAY — WAIT FOR INPUT

020C 99 19 ' BCC MINUS

020 BS5 11 LDAZXD +1 — REMOVE CURRENT DECIMAL POINT

ADDR

9210
0212
9214
9215
@216
9218
021A
921C
021E
021F
@221

0222
0223
0224
09225
0227
9229
@228
@22E
®30

9232
9235
9236
9238
0239
09238
023D
@23F

@24
0243
0244
0246
9248

@24A
@924C
924D
024F
9251

0264
0255
0257
025A
925D
025F
0260
0262
0264
9266
9268

9268
0926C
026E
9271

9273
8275

@277

9279

827A

20
@D
20
99
0E
20
@c

FA
(1133
93
3
20
24
F9
23
24
28
F9

24

02

FE

00

B 1

24
28
12

DB
20
25
20

F4
04
1F
0]
28

29

]
]

02

FF

LABEL

MINUS

CcOMMOV

WAIT

NEXTS
BLOCK

ONEOFF
BRICK

TRY

EMPTY

CHECK

CONT

INSTRUCTION

AND #7F
STAZX D + 1
INX

INX

cPx #07

BCC SHIFTPT
LDX #op
BEQ SHIFTPT
TAY

BEQ CHEAT
TXA

LSRA

TAX

SEC

LDAZX STACK
SBC KEY
STAZX STACK
JSR DSPGAP
STY REPEAT
LDX #00

JSR DISPLAY
DEX

BNE WAIT
DEX

STX REPEAT
LDY #03

LDX #03
LDAZX STACK

STAZX POSS
DEX

BPL BLOCK
LDX #03
LDA2X POSS

STA2X ANAL
DEX

BPL BRICK
LDX #03
LDA, Y POSS
SEC

SBC #@1
STA, Y POSS
STA. Y ANAL
BCS CHECK
DEY

BPL NEXTS
LDAZX STACK
BEQ EMPTY
DECZX STACK
JMP HUMMOV
DEX

BPL TRY

JMP RESTART
LDA #04

STA COUNT
LDA #00

LSR ANAL
ROLA

LSR ANAL + 1

COMMENTS

MOVE FORWARD

END OF STACKS?

PREVENT ZERO FROM BEING USED

ADDRESS OF REQUIRED STACK

DO THE PLAYER'S MOVE

SHOW STACKS

THINKING TIME

CLEAR REPEAT STATUS

TRANSFER STACK TO POSS

POSS REPRESENTS THE POSSIBLE
COMPUTER

MOVES

TRANSFER POSS TO ANAL
ANAL REPRESENTS THE MOVE
BEING

ANALYSED

POSS CONTAINS POSSIBLE MOVE
ANAL CONTAINS POSSIBLE MOVE

TRY ALL STACKS
CHECK IF STACK EMPTY
MAKE DESPERATE MOVE

LOST.

EVALUATE MOVE

ADDR HEX LABEL INSTRUCTION COMMENTS

CODE
@27C 69 00 ADC #00
@27 46 2A LSR ANAL +2
9280 69 0@ ADC #00
9282 46 2B LSR ANAL + 3
9284 69 00 ADC #00
9286 4A LSRA
9287 BQ BF BCS ONEOFF — NOT A GOOD MOVE
p289 C6 1F DEC COUNT
9288 D@ E8 BNE CONT — KEEP CHECKING THE MOVE
@28D A2 @3 LDX #03 — GOOD MOVE, TRANSFER TO
ACTUAL STACKS
@28F BS5 24 BAT LDAZX POSS
9201 95 29 STAZX STACK
9293 CA DEX
@294 10 F9 BPL BAT
9296 4C 00 02 JMP HUMMOV — OPPONENT.
9299 A9 09 DSPGAP LDA #09
0298 A2 @7 LDX #07
@29D 95 19 CLEAR STAZX D — CLEAR THE DISPLAY FIRST
@29F CA DEX
92A0 10 FB BPL CLEAR
P2A2 D8 CLD — CLEAR DECIMAL MODE
@2A3 A2 @4 LDX #04 — DISPLAY STACKS
92A5 AD 4+ 07 LDY #01
92AY B5 1IF AROUND LDAZX STACK —1
92A9 20 7A FE JSR HEXTD
@2AC €8 ¥ INY
92AD €8. &y INY
92AE CA DEX
@2AF D@ F6 BNE AROUND
9281 63- Ap s & RTS
P282.
TAB S ey
2

THE DUCKSHOOT GAME IS A SPEED TEST: YOU HAVE TO SHOOT THE FLYING
DUCKS. THEY SUCCESSIVELY ENTER FROM THE RIGHT AND FLY TOWARDS
THE LEFT AT A SET SPEED. YOU SHOOT A DUCK BY PRESSING ITS CURRENT
POSITION ON THE KEYBOARD. THE LEFT MOST DISPLAY IS @, THE RIGHTMOST
DISPLAY IS 7. WHEN A DUCK IS HIT IT DIES. THE GAME MAY BE RESTARTED
WITH ANY HEX DIGIT KEY

DUCK SHOOT
ADDR HEX LABEL INSTRUCTION COMMENTS
CODE
9200 A9 1IF BEGIN LDA #1F — SINGLE SCAN DISPLAY ROUTINE
@202 85 OF STA Z QE
0204 A9 00 LDA #00 — CLEAR THE DISPLAY
0206 A2 07 LDX #07
9208 86 20 STX Z 20
020A 95 10 CLEAR STAZX 10
920C CA DEX
920D 19 FB BPL CLEAR
020F A9 00 REMOVE LDA #00 — TAKE THE OLD DUCK OFF

9211 A6 20 LDX Z 20

ADDR HEX LABEL INSTRUCTION COMMENTS

CODE

9213 95 19 STAZ X 10

9215 A9 61 INSERT LDA #DUCK — PUT NEW DUCK ON

0217 CA DEX ~ IN NEW POSITION

9218 10 @2 BPL OLDX — BUT NOT OVER THE END OF THE
DISPLAY

021A A2 07 LDX #07

@21C 95 19 OLDX STAZ X 10

@21E 86 20 STX Z 20

9220 A2 @E LDX #TIME — DISPLAY INTERVAL IS SET BY THE
BYTE LOADED INTO X

9222 20 @C FE WAIT JSR DISPLAY

@225 C5 20 CMP Z 20 — HIT?

@227 FO @5 BEQ H1T

9229 CA DEX

@22A D® F6 BNE WAIT

@22c FO® E1 BEQ REMOVE — FINISHED WAIT TIME

922E A9 1iC HIT LDA #DEAD DUCK — PUT IN A DEAD DUCK

@230 A6 20 LDX Z 20

@232 95 10 STAZ X 19

9234 A9 FF LDA #FF

9236 85 OF STX 2 OE

- 9238 20 @OC FE FE JSR DISPLAY — TEST FOR CONTINUATION

9238 99 C3 BCC BEGIN

923D AC @4 FF JMP RESTART — OR BACK TO THE MONITOR

923F

MISCELLANEOUS

1

THE COUNTER PROGRAM COULD BE USED AS A SUBROUTINE IN A LONGER
PROGRAM WHEN "JSR INCR" AND "“JSR DECR" WOULD INCREMENT OR
DECREMENT THE DISPLAY. IF THE PROGRAM APPENDED IS ALSO ENTERED
THE DISPLAY WILL INCREASE OR DECREASE RAPIDLY IF “UP" OF “"DOWN"
KEYS ARE DEPRESSED. THISWILL BE STOPPED BY ANY HEX KEY. ITWILL
INCREMENT BY THE INDICATED AMOUNT IF KEYS 1—F ARE DEPRESSED AND
WILL IGNORE ALL OTHER KEYS.

YOU SHOULD PARTICULARLY NOTICE THAT A JSR DISPLAY RETURNS WITH
THE CARRY BIT CLEAR AND THE ACCUMULATOR HOLDING THE VALUE OF
THE KEY PRESSED FOR THE NUMERICAL KEYS, AND THE CARRY BIT SET AND
THE VALUES -7 IN THE ACCUMULATOR FOR THE CONTROL KEYS. IF
MEMORY LOCATION @E, WHICH IS DEDICATED TO THE MONITOR AND SHOULD
NOT NORMALLY BE USED IN PROGRAMS, HAS THE MOST SIGNIFICANT BIT
CLEAR THEN JSR DISPLAY WILL SCAN ONLY ONCE, IF ITISSET IT WILLWAIT
FOR A KEY TO BE DEPRESSED BEFORE RETURNING TO THE PROGRAM. 1T IS

A GOOD IDEATO LOAD ITWITH ‘IF* IF YOU WISH TO USE THIS FACILITY AS
OTHER VALUES MAY CAUSE YOU DIFFERENT PROBLEMS. AGAIN SEE THE
REST OF THIS MANUAL IF YOU REALLY WISH TO UNDERSTAND THE PROCESS.

COUNTER KEYBOARD

ADDR HEX

01D
0020

0922
0024
0026
0028
002A
202C
002E
030
0032
@035
0037
0039
0038
PO3E
OON

o041

@043
0045
9048
o048
@840
004F
0051

@053
0@56

0058
PO5A
9058

005D
805D
OP5F

LABEL

CODE

20
o0

c9
Fo
c9
Fo
D®
co
85
Fo
20
cé
10
30
20
20

@C FE DiISP
0A

07
1F
06
1
F1

o0 CHANGE

19

ED MORE
60 00

19

F7

E2

60 0 uP
45 @9

69 00 DOWN
AF 00
1F ZOOM
oC FE

FF

FF
QE

COUNTER SUBROUTINE

ADDR

060
0062
o064

HEX

LABEL

CODE

1A INCR
oD
1B

08

1A DECR
02

1B

1A NOT

1A UPDATE

64 FE

INSTRUCTION

JSR DISPLAY
BCC CHANGE

CMP #- 97
BEQ DOWN
CMP # 06
BEQ UP
BNE DISP
cMP# 0p
STA COUNT
BEQ DISP
JSR INCR
DEC COUNT
BPL MORE
BMI DISP
JSR INCR
JSR ZOOM

BNE DISP
BEQ UP

JSR DECR
JSR ZzOOM
BNE DISP
BEQ DOWN
LDA #1F
STA QE

JSR DISPLAY
BCC STOP

LDA # 0
RTS
LDA # FF

LDA # FF
STA OE
RTS

INSTRUCTION

INC CNTL
BNE UPDATE
INC CNTH
SEC

BCS UPDATE
LDA CNTL
BNE NOT
DEC CNTH
DECCNTL
LDX #IE

JSR QHEXTD1
RTS

COMMENTS

— START OF 9p1C

— LOOK FOR KEY

— CHECK IF CONTROL KEY CARRY
SET IF SO

INCREMENT NO OF TIME OF TEY

RAPID INCREMENT

RAPID INCREMENT

SET FOR ONE SCAN ONLY

CHECK IF KEY DEPRESSED CLEAR
IF ONE IS

RESET SO THAT JSR DISPLAY
WAITS FOR INPUT

COMMENTS

3

THE METRONOME PRODUCES A PULSE AT THE TAPE OUTPUT PIN, PAG, WITH A
REGULAR PERIOD. THE “UP"" AND “"DOWN" KEYSWILL INCREASE AND
DECREASE THE PERIOD RESPECTIVELY. WITH SUITABLE ADDITIONAL
CIRCUITRY THIS COULD DRIVE A LOUDSPEAKER OR A 'STROBE' LIGHT. IN
FACT A SMALL SOUND CAN BE OBTAINED BY SIMPLY CONNECTING A LOUD-
SPEAKER ACROSS THE TAPE OUTPUT AND EARTH PINS.

THE CONSTANTS USED AT PRESENT MEAN THAT THE PULSE IS OF 1/30® SEC.
AND THE DELAY BETWEEN PULSES CAN BE VARIED FROM 1/2¢ SEC. TO
ABQUT 13 SECS. YOU CAN DEFINE THE PERIOD BEFORE STARTING THE
PROGRAM BY PUTTING THE REQUIRED VALUE INTO MEMORY LOCATION
9020, 20 WILL GIVE ABOUT 1 SEC BETWEEN PULSES, AND ANYTHING ELSE
PROPORTIONATELY MORE OR LESS. ONCE THE PROGRAM IS RUNNING THE
‘UP" AND 'DOWN’ KEYSWILL INCREMENT AND DECREMENT THE PERIOD BY
ABOUT 1/20 SEC EACH TIME THEY ARE PRESSED. THEY ALSO RESET THE
CYCLE. THIS FACILITY COULD USEFULLY BE USED FOR FINE TUNING BUT
WOULD BE TEDIOUS FOR LARGE CHANGES OF PER{OD.

METRONOME
ADDR HEX LABEL INSTRUCTION COMMENTS
CODE

®ed A9 1F LDA #1F

9202 85 OF STA REPEAT — SET DISPLAY TO SINGLE SCAN

9204 A9 40 PULSE LDA #40 ,

9206 8D 22 @E STA 1ADDR — DEFINE PA6 AS OUTPUT

9209 8D 16 OF STA SET PIAG — USE INS8154 SET BIT MODE

920C 20 CD FE JSR WAIT — USE THE 309 BAND WAIT

@20F 8D @6 OE STA CLR PIAG — USE IN58154 CLEAR BIT MODE

0212 A6 20 LDXZ PERIOD

@214 20 OC FE DELZ JSR DISPLAY — LOOK AT KEYBOARD

9217 C9 16 cmp #16 — UPKEY?

9219 DO 04 BNE DOWN ~ NO

0218 E6 2¢ INCZ PERIOD — INCREASE PERIOD

@21D BY ES5 BCS PULSE — CARRY WAS SET BY THE COMPARE:
ALWAYS

@21F C9 17 DOWN CMP #17 — DOWN KEY?

0221 DO 04 BNE DELI - NO

9223 C6 20 DECZ PERIOD — DECREASE PERIOD

@225 B® DD BCS PULSE — CARRY WAS SET BY THE COMPARE:
ALWAYS

9227 AD @C DELI LDY #0C — CYCLE TIME OF 4 %@ SEC.

@229 20 CD FE DELJ JSR WAIT

@22¢c 88 DEY

822D 10 FA BPL DELJ

@22F CA DEX

@230 D@ E2 BNE DEL2

9232 Fp DO BEQ PULSE — END OF THIS PERIOD SO PULSE

9234

4

THE EIGHT QUEENS PROBLEM IS TO FIND THE NUMBER OF WAYS IN WHICH
EIGHT QUEENS MAY BE PLACED ON A CHESS BOARD WITHOUT ATTACKING
EACH OTHER. THE PROGRAM FINDS 92 WAYS SINCE IT COUNTS ROTATIONS
AND REFLECTIONS, ALLPOSSIBLE POSITIONS ARE TRIED AS SOLUTIONS IN
THIS HIGH SPEED RECURSIVE (I.E. IS DEFINED IN TERMS OF ITSELF)

PROGRAM. THE STRATEGY OF THE PROGRAM IS NOT OBVIOUS, AND IS LEFT
AS AN EXERCISE TO THE READER. A SMALL PRIZE WILL REWARD THE
SUBMISSION OF A SHORTER, FASTER PROGRAM; NOTE THAT WORKSPACE
REQUIREMENTS CONTRIBUTE TO THE LENGTH!

8 QUEENS PROGRAM

0200
0201

0203
0205
0207
9200
9208
920E
0210
9213
@216
0218
P21A
921C
@921E
0229
09222
9223
0225
9227
9228
022A
922C
@22
022F
0230
9232
9233
9235
09237
9238
023A
9238
923D
923
0249
0241

9243
0244
0247
9248
024A
@24C
024E
0250
9253

16 02

60 FE
84 FF

12
13
16 02
01
FF
18

27 92

MAIN

TRY

FINISH

LOOP

SED
LDX #20
STY COUNT
STY ROW
STY LEFT
STY RIGHT
JSR TRY
LDA COUNT
JSR RDHEXTD
JMP RESTART
LDAZX 09
CMP #FF
BNE CONTINUE
LDA COUNT
ADC #00
STA COUNT
RTS

ORAZX 09
ORAZX 12
TAY

EOR #FF
BEQ FINISH
STAZX 1B
INY

TAY
ANDZX 1B
T™MY
CRAZX 00
STAZX 91
TYA
ORAZX @9
ASLA
STAZX A
TYA
ORAZX 12
LSRA
STAZX 13
INX

JSR TRY
DEX

LDAZX 91
EOR #FF
ANDZX 1B
EOR #FF
JMP LOOP

CLEAR COUNT

CLEAR ROW OCCUPIED

CLEAR LEFT DIAGONAL ATTACKS
CLEAR RIGHT DIAGONAL ATTACKS
FIND THE NO OF WAYS

DISPLAY ANSWER

FINISHED YET?

FINISHED, SO INCREMENT COUNT

CURRENT LEFT

CURRENT RIGHT

NO CHANCE
CURRENT POSSIBLE PLACE

NEW ROW

NEW LEFT ATTACK

NEW RIGHT ATTACK

APPENDIX A
64 CHARACTER ASCIl ON ACORN'S 7 SEGMENT DISPLAY

ASCII CODE DISPLAY CHARACTER HEX ASCII CODE DISPLAY CHARACTER HEX

1] 3 @ 5F 20 00
1 R A 77 21 l. ! 86
2 - B 7C 2 o " 2
3 C C B8 23 o] # 63
4 4 D BE 24 C £ 3B
5 E E 79 25 ~ % 20
6 F F 71 26 B & 7B
7 O G 3D 27 1 ‘ 19)
8 b H <] 28 C. (B9
9 T | 1,3) 2 .) 8F
A 3 J oD 2A H * 76
B = K 75 2B — + 42
c (I L 38 2C ! , o4
D M M 37 20 — - 49
E r—. N 54 2E . ; 8p
F O 0 5C 2F — / 52
10 / P 73 3 0O 1) 3F
1 q Q 67 3 | 1 06
12 — R 50 R = 2 5B
13 5, S ED 3 3 3 4F
14 = T 78 4 — 4 66
15 L u ac 35 5 5 6D
16 L v 1C 36 &5 6 7D
17 H w 7E 37 1 7 @7
18 = X 49 3 H 8 7F
19 H Y 6E 2 | 9 6F
1A =. 7 BD 3A t : 82
1B C {) 3B 1 ; 84
1C N \ 64 3C — (46
1D 3] oF 3D = = 48
1E ™ A 23 3E —) 70
1F - - 08 3F — ? D3

Wev] 16 18 66 as as g6 g8 - HOLVINWNDOV 3HOLS] V1S
Ved+W—Vv] 14 13 64 a4 a3 &4 g3 63 ADEN AHHVYO/MOHHOS
HLIM 10vH18nS 28s
Ve<WAV] LI 1@ 6! at ap st o1} 60 ZN HO IvIID01 VHO
VenW] 18 LV 69 as av ¢d v 6v ZN | "oLv1Innnoov avon vai
Ve«eWAV] 1§ v 65 as ar Gg G 6% EN HO
AAISNTIOX3 TVIIDOT H03
W—v|] ta 2o 6Q aq aos sa *'o) 60 22N IHVIWO0D TVII1D01 dWD
V< WeV] L 12 6c ae az s¢ =74 62 ZN ANV 1v21901 ANV
Ve<I+W+Y 1L 19 6L acs a9 Gz 59 69 ADZN AHHVYD HLiiM aav oav
srl g33ds
=S3TIOAD| +§ 9 + + ¥ ¥ € Z | a3i1o3dav
S31A8 z z £ € € z z Z [dNISsovid
A (X AY X'V 31nN10Sav X'z 0"3Z d3annwi aaow IVEaYIADINOWIANW
ONISS3Haay

HOLVINWNIOV <~ AHOWIW ‘NOILVYHIO ‘HOLVINWNIIY :3ONIHI43H HOLVINWNDIIY |
13S NOILONYLSNI 9 XIAN3IddV

It RELATIVE: RELATIVE ADDRESSING MODE

2BYTES 2+%1 CYCLES

MNEMONIC VERBAL

BCC BRANCH IF CARRY CLEAR 99 BRANCHIFC=90
BCS BRANCH IF CARRY SET BO C=1
BEQ BRANCH IF EQUAL {TO ZERO) Fo Z2=1
BMI BRANCH iF MINUS 30 N=1
BNE BRANCH IF NOT EQUAL Do Z=0
BPL BRANCH {F PLUS 9 N=0
BVC BRANCH IF OVERFLOW CLEAR 50 V=0
BVS BRANCH iF OVERFLOW SET 70 V=1

VA z| s6 ZN V OL A 434SNVHL VAL
S« X z] ve ZN SOL X 4I4SNVHL SX1
Ve X z| vs ZN V OL X 434SNVHL XL
X<«S z| ve ZN X OL'SHIISNVHL XSL
A<V z| sv ZN A OLV g34SNvHL AVL
XV z| wv ZN X OLV 434SNVHL XvL
LIX3 NO ILH NV B AHLNI HOd<- S+ @0LB S« L +S
NO dHd V HO4 ALINNLHOddO— T0d«S+P0LB S« L +S 9] oo 3NILNOYEANS WOYJ NYNL3Y SiH
) J?J,\q yru C»::ﬂ b pe ,N\ IU&AIW+SS—.S S« 1+S
Y Doy i e Ty pry by [el ‘\.é l_Un_Al.w+SSFS S« L+S
s sl ag e) Ly = d<S+00LP S« L +S 9l ov| 17v] LdNUHILNI WOHH NENL3Y 1Ly
/ONISSIHAAY HOLVINWNIIV.,~ v]«—3 z| vo| o=N V 1HOIY 3LV.L0H vHOoH
.ONISSIHAAY HOLVINNNIOV,— _HH —) z| vzl o=N V 1437 31vL0H vi0d
deS+@PLO S« L +S v| 8] 7Iv] snLviSuyOSS300Hd 11Nd did
V<S+0PL0 S« L +S v| 89 ZN vV 1nd vd
S« | —S'S+00L0«d gl so SNLV1S HOSSIO0Hd HSNd dHd
S« L—S'S+PpLp«V el sv V HSNd VHd
z| v3 NOILVH340 ON dON
DNISSIHAAV HOLVINWNIOY — | Z+ >m<z.m_ 1
INOIHY] <@ O z) wvl 02N V 1HSIY L4IHS TvOID01 vHST
Ael+A z| 80 ZN A ONIAHVNIS ANI
X« L+X z} 83 ZN X ONI AHVNISE XNI
Ael—A z| e8 ZN A D30 AHVNIE A3a
X<l —X z| vo ZN X 030 AHVNIE X3a
Ae® z] s8 A MO14H3AO HV3I1D A0
SLdNYHILNI SMOTIV — I« 0 z] 8s 1| 318vSIa LdNYYILNI HV3I1D 12
"HLIHV AHVNIE NI 3LVHIJO — Q0 z| sa a 300N TVYWID3A V31D a1
2«0 z| s o) OV1d4 AHYVYO HVITD gt}
LdNYHIALNI
3HVYMLI0S, SV NMONY 0S1V DYl uo UBYl G | Ll oo 8 MLERTE: dug
3Q0W ss3daav
HOLVINWNIOY SYNMONN 0STV | ZX AHYNISB8«]_V_J-0 gl vo| 0zZN] VL1431 LAHSOILIWHLIBY] . VISV
awiL SOV Ivay3A | OIHOWINW

JAO0W SS3HAAY ON HLIM 3LAE FTONIS "A3ITdINIL 11l

3OVd SSOHD B HONVHSE 41 Z + 'HONVHSE 41 L + ‘'HONVHE ON 410 + 14+
ONISSOHD 39Vd SIATOANI NOILYHILO 41 3TDAD YHLXT : +
[W]e— O ENA 39 9L 99 IZN 1HOIY 31v10H Hod
H@l 2 El 3z o€ 9z 22N 1437131v10H 70H4

1HOIY
(N« 9) (W Jeo® O 35 El 9g o 2ZN 14IHS V21901 ys
We L+ 34 a3 94 93 ZN| INIWIHINI AHVYNIE ONI
Wel =W 3a Ele) 9d 90 2N | LN3IW3uo3a AdYNIg J3a

P> v]-> O al ag 9l o0 IZEN 1437
LAIHS DI LIWHLIYY sV

InIL L 9 9 S ,
S3LA8 € € z z
3aonw

X'V say X'z OHIZ ONISSIHAAY SOV14]| 1vgHIAIDINOWINI

JLIHM — AJIQOW — AV3IH A

We A - - - 8 — v6 v8 - H31S1934 A 3401S ALS
We X - - - 38 96 — g8 - H31S1934 X 34018 X1S
AeWW - — 04 ov. — V8 (4% ov ZN H31S1934 A avol AQ7
X< W — 38 - 3v 98 - 9V v ZN H31S81934 X avol Xan
HOd« L + W1Dd« N 29 - - o - - - - - dAanr dAP
W—A - - - 2 - - 1) (/0] JEN A JHVAWOO AdD
W— X - - = 23 — - v3 93 JZEN X IHVAWNOD Xd2
SLl9 LSIL ANV JASVIN
N WA«IN'ZeW VYV - - - Qe - - ve - AZNL HLIM ANV V21901 119
INIL S +v +¥ v v v € [4
S3LAd € € € € ¢ ¢ [4 [4
3GONW
123HIaNT A'V X'V 31N10S8Y A'Z X'Z O"3IZ Q3WWI SNISSIHAAQV] Sov4 AVAHIAJOINOWINW

HYOLVYINWNIOVY NVHL H3IHLO0 SHILEIDAY Al

1HVHOI AT8N3SSVYSSIa

3 a o) v 6 8 9 g v z L 0
X'V X'V A'V X'2 X'z A1) oag | -
NI Jas 0as oni | oss ogs) =
31M105av [A1Mosav [aLmosav N =TT ou3z Jou3z |ovaz o' D] |-
INI 28s XdD o8s onNi | oas | xad Jas] xdd|®
X'V X'V AV X'z X'Z Al)
J3a dIND dano | 910 o3a | 4wd awg] INFIC
31N105aY [BIN108av AL ioseY DN [SETOVIE B Ouaz Jou3z |owaz x| aanwn |-
23d dIND AdD dND 53a | awo | Add awd| AdD [*
AV X'V X'V AV A'Z X'2 X'z A
XQ1 val AQT XSLE gaq | AP xa1 | vat | a7 vall So9|¢E
SINosav [BLNIoSav [ALniosay) =TT Ouaz |ouaz jousz GINNT | (X0 GanAT [,
Xa1 val AGT val xa1 | vai | Aa1 xa1 | vail Aal
X'V A2 X'Z X2 A1)
V1S Sxi VAL x1S| vis | ALs vis| 998 ¢
31n10sav BLnosav [aLnosay il *V [raa ou3z o3z |ouaz >N M
X1S V1S ALS ViS x1s | vis | Als V1S
XV XV Y Xz| XZ NT YD
HOY 2av Jav yoy | oav Jav
aLnosav Sav JLO341aNI RERT ouaz lou3z X1
HOoY Jav dNT VHOH| Thqy | Vd bo4 | oav sav| Si¥ ¢
X'V X'V AV X'Z X'z A
HS HO3 VESTE ygoz | 1 us1 | "o3 yoa| °oNe |t
31MM0Sav [ALmosav |2 iosav GETT N ousZ |ou3z o0l 11w |4
§s1 HO3 dNF HO3 ¥s1 | wo3 yo3
X'V XV Y Xz| XZ NT
70y aNv anv 704 | anv anv
31I0Sav [AIMosav |31 iosay ou 1T | g Ouaz jou3z [ou3z XN :
904 ANV 118 aNv 7ou | anv | Lis ANy
XV XV Y XZ| X2z A ()
sV VHO vho | 2P qsv | awo aquo| 48
31n1osav | aLnosv GETT ou3z |od3z XNl ~aa 1
TSy VHO visv| wuo Isv | vHO ayo
3 a) v 6) 9 g v Z ! 0
11910 aNZ 11910 LS

APPENDIX C HEXADECIMAL TO DECIMAL

1st
DIGIT 2nd DIGIT

) 1] 2 3 4 5] 6 7 8] 9 A B8 Cf D E} F

[11 2 3 4 5] 6 7 8] 9 10 11 12{ 13 14} 15
16 170 181 191 201 21] 221 23] 24] 2561 261 27 28] 291 30f 31
32§ 33] 34 5] 36§ 37§ 38] 39| 49| 41 42 43| 44] A5 | 46] 47
481 49] 50{ 51 52] 53] 54] 55] 56| 57 581 591 60@] 61 62] 63
641 65] 66| 67] 68] 69] 78] 71 723 731 741 75}f 761 77 78] 79
80] 81] 821 83] 84| 85] 86] 87 88] 89| 98] 91 92] 931 94} 95
96 97] 98] 99) 100 1 101]J102] 103] 1041105] 106 | 107} 1981199] 11¢]111
1121 1131114 1 1151 116 | 117]118] 119] 120]121] 122] 123 | 124|125 126}127
128] 129113 131] 132] 133}134} 135} 136]137 | 138] 139 | 14pf141 | 142§143
144 1 1451146 | 147 | 148 | 149|150] 151 | 1562|153] 154] 155| 166157 | 168}1569
760 | 161|162 | 163 | 164 | 166]166] 167] 1668|1601 176 | 171] 1721173] 1741175
176 1 1771178 1 1791 180 | 1811182 183] 184}185| 186§ 187 | 188]189 | 1909}191
192 | 1931194 | 1951 196 | 19711981 199] 200{201 | 202 | 203 | 2041205 | 206]207
2081 2091210 | 211 | 212] 213]214 | 2151 216f217] 218 | 2191 220]221 | 222}223
224 | 225|226 | 227 | 228 | 229230 231 | 232]233 | 234 | 235 | 236]237 | 238]239
240 | 2411242 | 243 | 244 | 245)246 | 247 | 248249] 250 § 251 | 252|253 | 254255

Ml OO @] 3] ©f of Vol o] WIS

HEX DEC
100 256
200 512
409 1024
800 2048
1000 4096

2000 8192 -
4000 16384
8000 32768
10000 65636

APPENDIX D ACORN MONITOR ADDRESS INFORMATION
ADDRESS LABEL COMMENT

0000,0001 MAP LOW AND HIGH BYTES OF THE M ADDRESS

00020003 GAP LOW AND HIGH BYTES OF THE GO ADDRESS

0004,0005 PAP LOW AND HIGH BYTES OF THE BREAKPOINT ADDRESS

00060007 FAP LOW AND HIGH BYTES OF THE TAPE FROM ADDRESS

00080009 TAP LOW AND HIGH BYTES OF THE TAPE TO ADDRESS

000A RO REGISTER @: CONTAINS A AFTER BREAK.

@o0B R1 REGISTER 1: CONTAINS X AFTER BREAK.

200C R2 REGISTER 2: CONTAINS Y AFTER BREAK.

000D R3, KEY REGISTER 3: TEMPORARILY P AFTER BREAK,
CONTAINS LAST PRESSED KEY FOR DISPLAY

OOOE REPEAT MSB=1SETS REPEATEDLY SCANNED DISPLAY,
OTHERWISE SINGLE SCAN.

GOOF EXEC EXECUTION STATUS OF THE KEY PROCESSING

ROUTINE

0010

0011
0012
0013
0014-0017
o018

2819
BB1A

081C,001D
GB1E,001F
0@1B
FEGQ
FE@C

FESE
FE6D
FEG4
FEB6
FEGF
FE7A
FE88
FEAQ

FEA6
FEB1

FECD
FED®
FEDD
FEF3
FF@4

FFB3

FFEA
@oIF

D,R4 BASE ADDRESS OF THE EIGHT DISPLAYED MEMORY
LOCATIONS, REGISTER 4: TEMPORARILY PCH AFTER

BREAK.

R5 REGISTER 5: TEMPORARILY PCL AFTER BREAK

R6 REGISTER 6: TEMPORARILY @1 AFTER BREAK

R7 REGISTER 7: TEMPORARILY S AFTER BREAK,
LAST 4 DISPLAYED MEMORY LOCATIONS.

P SINGLE LEVEL OF STORAGE FOR PREVIOUS DATA AT
BREAK POINTS.

CoL COLUMN OF KEY CURRENTLY BEING PROCESSED

TX,TY TEMPORARY STORAGE FOR X (IN DISPLAY)OR Y
(VARIOUS PLACES).

USERNMI ADDRESS OF USER’S NMI PROGRAM

USERIRQ ADDRESS OF USER’S IRQ PROGRAM

RECAL CONTAINS PC RECALCULATION FACTOR FOR BREAK

QUAD DISPLAY X—3,X—2,X—1,X ON THE DISPLAY; THEN {

DISPLAY STROBE KEYBOARD, MULTIPLEX DISPLAY, RETURN
WITH KEY INFORMATION

MHEXTD DISPLAY A MEMORY BYTE ON RIGHT OF DISPLAY

RDHEXTD DISPLAY A ON RIGHT OF DISPLAY

QHEXTD1 DISPLAY X & X+1 ON DISPLAYS123& 4

QHEXTD2 DISPLAY X & X+1 ON DISPLAYS Y=-2,Y-1,Y & Y+1

DHEXTD DISPLAY A ON DISPLAYSY & Y+1

HEXTD DISPLAY BOTTOM 4 BITS OF A ON DISPLAY Y

QDATFET FETCH AN ADDRESS INTO LOCATIONS X & X+1

COM16 INCREMENT & COMPARE TWO 16 BIT NOS X+6,X+7 &
X+8,X+9

NOINC COMPARE X+6,X+7 & X+8,X49 FOR EQUALITY

PUTBYTE A TO TAPE,DO 1 START & 1 STOP BITS, NO PARITY

WAIT WAIT FOR CASSETTE TIMING

“BWAIT HALT THEWAIT

GETBYTE TAPE TO A, WAIT FOR START BIT, CENTRE TIMING

RESET ENTRY TO MONITOR

RESTART RE-ENTRY TO RUNNING MONITOR

BREAK ENTRY TO MONITOR FROM BRK INSTRUCTION,
DISPLAY CPU

FONT SEVEN SEGMENT PICTURES OF THE HEX DIGITS

RECAL CONTAINS PC RECALCULATION FACTOR FOR BREAK

GLOSSARY
— ACCUMULATOR: 8-BiT CENTRAL REGISTER IN THE MICROPROCESSOR.

MOST INFORMATION HAS TO GO THROUGH IT.

— ADDRESS: 16 BIT POINTER TO A MEMORY LOCATION. THE 6502 MICRO-
PROCESSOR CAN ADDRESS 65, 536 SUCH LOCATIONS (WHICH IS 21¢).

— ARITHMETIC LOGIC UNIT (A.L.U.): A SECTION OF THE MICROPROCESSOR
WHICH CARRIES OUT ARITHMETIC (ADDITION, SUBTRACTION,
INCREMENT, DECREMENT & COMPARE) AND LOGIC (“AND", “EOR",
“OR", & BIT SHIFTS) MANIPULATIONS. THIS IS THE ONLY PART OF
THE MICROPROCESSOR WHICH ALTERS DATA.

— COMMAND: THE MONITOR FUNCTIONS M,G,P,R,L,S,1}.

— DATA: INFORMATION FOR THE PROCESSOR THAT DOES NOT HAVE TO BE
TRANSLATED. e.g. “AD”* AS DATA ACTUALLY MEANS 10x16+13x1 =173y
WHEREAS THE INSTRUCTION “AD"” GETS TRANSLATED INTO THE
OPERATION “LOAD ACCUMULATOR ABSOLUTE".

— EPROM: ERASABLE PROGRAMMABLE READ ONLY MEMORY. THIS TYPE
OF MEMORY IS LIKE A PROM, BUT CAN AGAIN BE ERASED BY
EXPOSING THE CHIP TO ULTRAVIOLET LIGHT.

— FLAGS: ONE BIT INTERNAL REGISTERS. ALL SEVEN FLAGS CAN ALSO BE
TREATED AS SEPARATE BITS OF THE P REGISTER (PROCESSOR STATUS).

— INDEX REGISTER: A REGISTER WHICH CAN BE USED TO MODIFY AN
ADDRESS (USED IN REFERRING TO DATA) BY BEING ADDED TO IT, THUS
ACCESSING A CERTAIN ELEMENT OF A TABLE. THE 6502 HAS TWO INDEX

REGISTERS CALLED X & Y.
— INSTRUCTION: A FUNCTION OF THE MICROPROCESSOR LIKE LOAD AND

STORE.

— 1/0: INPUT/OUTPUT. THIS CHIP ALLOWS YOU TO COMMUNICATE WITH THE
QUTSIDE WORLD. IN THE ACORN THE 1/0 CHIP HAS 16 PROGRAMMABLE
LINES WHICH CAN EITHER BE QUTPUTS OR INPUTS. IT ALSO HAS 128
BYTES OF RAM.

— IRQ: INTERRUPT REQUEST. IF FLAG | (INTERRUPT DISABLE) IS CLEAR AND
A REQUEST 1S MADE THE PROCESSOR WILL ATTEND TO IT AFTER
SETTING FLAG | AND STORING THE PROGRAM COUNTER AND STATUS
REGISTER.

— JUMP: THE PROGRAM COUNTER IS LOADED WITH A NEW ADDRESS. THE
EXECUTION OF THE PROGRAM, WHICH IS NORMALLY USING
CONSECUTIVE ADDRESSES, CONTINUES (JUMPS) AT THIS NEW ADDRESS.

— LOAD: TRANSFERS THE DATA OF A MEMORY LOCATION TO AN INTERNAL
REGISTER.

— MNEMONIC: SUGGESTIVE ABBREVIATION OF AN INSTRUCTION e.g. THE
INSTRUCTION “LOAD ACCUMULATOR ABSOLUTE"” HAS THE MNEMONIC
"“LDA".

—NMI: NON MASKABLE INTERRUPT WHEN THE NON MASKABLE INTERRUPT
IS ACTIVATED THE PROCESS WILL SET FLAG I, STORE AWAY ITS
PROGRAM COUNTER AND STATUS REGISTER AND THEN IMMEDIATELY
ATTEND TO THE INTERRUPT, THERE IS NO WAY OF PREVENTING THIS
INTERRUPT. IT HAS PRIORITY OVER IRQ.

— OPCODE: HEXADECIMAL REPRESENTATION OF AN INSTRUCTION. e.g. THE
INSTRUCTION “LOAD ACCUMULATOR ABSOLUTE"” HAS THE MNEMONIC
"LDA'" AND THE OPCODE “AD".

— PROGRAM COUNTER: 16 BIT REGISTER WHICH CONTAINS THE ADDRESS OF
THE INSTRUCTION BEING EXECUTED. DURING EXECUTION THE
PROGRAMCOUNTER ISSTEPPED UP TO POINT AT THE NEXT INSTRUCT!ON.

— PROM: PROGRAMMABLE READ ONLY MEMORY. THIS TYPE OF MEMORY
ARRIVESBLANK. IT CAN BE PROGRAMMED BY THE USER WITH THE
HELP OF A SPECIAL PROM BLOWER. ONCE THIS PROGRAM HAS BEEN PUT
IN, IT CANNOT BE CHANGED.

— RAM: RANDOM ACCESS MEMORY. THIS IS THE STANDARD READ/WRITE
MEMORY. DATA (AND PROGRAMS)} ARE LOST WHEN THE POWER IS
SWITCHED OFF.

— REGISTER: STORAGE LOCATION IN THE MICROPROCESSOR ITSELF. THERE
ARE INTERNAL REGISTERS A, X, Y,PC,S, P.

— ROM: READ ONLY MEMORY. THIS IS MEMORY THAT HAS A PROGRAM PUT
IN DURING PRODUCTION. THIS PROGRAM CANNOT EVER BE CHANGED,
IT CANONLY BE READ.

— STORE: TRANSFERS DATA FROM AN INTERNAL REGISTER TO MEMORY.

— XTAL: THE CRYSTAL IN THE ACORN OSCILLIATES AT 1 MHZ. i.e. ONE
MILLION TIMES A SECOND. IT DOES THIS WITH GREAT ACCURACY. SO
YOU CAN BUILD A CLOCK FROM YOUR ACORN.

“E

1

%NTER Acorn Computers Limited, 4a Market Hill, Cambridge CB2 3NJ, England. Telephone 0223 312772

ERRATA

Please Note

1. An improved pair of Acorn monitor PROM's are now being
supplied with all Acorns; they are coded blue for high
nibble and yellow for low nibble. The listing is
modified as follows:-

FE26 Cc9 38 FE48 DO E4

FE28 BO 06 FE4C FO E2
FE2A 86 19 FESE Al 00
FE2C A9 40 FEA8 D5 08
FE2E 85 OF FEF5 9A

FE30 Al 00 FF2E 20 64 FE
FE32 88 FEF53 05 oD
FE33 DO FB FF76 20 Bl FE
FE40 DO EE FFDI ES 1B

2. In-appendix B part III of the Users' Manual, the following
comment for RTI and RTS should be noted:-

RTI executes the opcode obtained by pulling PC, but
RTS Steps PC to PC + 1 and executes that opcode.

3. In appendix B note that RECAL is at 001B.
4. Correction to 'Duck Shoot' - 0238 should be
0238 20 ocC FE
5. Correction to 'Nim'
0255 E9 01
02A5 AO 07
02AC 88
02AD 88
02BI AO IF
02B3 60
6. Correction to '8 Queens program'
022C 95 IB

7. On the Acorn mains adaptor the white wire is positive.

10.

In Section 6.2 the break address for
diagnostics should be loaded as:-

B3 in 001E
and FF in 001lF

The single step mode will work if the 1K base resistor of
The chip used is a

the BC107 is connected to Q and not Q.

74LS74.

The following corrections are necessary in the programs:-

Single Byte Multiply

b.

Offset Calcula

tor

Data

COUNTER KEYBOARD

0022
0026
002E
0030
0035
003E
0041
004B
005B
005D

0200
0201

0222

022F
0231
0234
0235
0237
023A
023D
023F
0242
0245

0225

EA
D8

20

c9

85
FO
Cc6
20
DO
DO
A9
85

NOP
CLD

04 FF JMP RESTART

55
48

80

04
57
48
ocC
01

02

FE
FE

02
FE
02

All other instructions move up
four spaces

17
16
79
EB
79
4F
DA
DO
FF
OE

71
7D
5C
71
00

71
F8
5C
77

00

RAPID DECREMENT
STOP LDA FF

— 3 -
The counter subroutine should read

0060 E6 7A
0062 DO 0D
0064 E6 7B
0066 38
0067 BO 08
0069 A5 TA
006B DO 02
0060 Co6 7B
006F C6 7A
0071 AZ TA
0073 20 64 FE
0076 60

11. NIM

The game starts at 0200 with your move or 022B
and the computer's move.

12. The hex code to display 'H' in Appendix A should
be 74
13. Appendix A

Section III should contain

MNEMONIC VERBAL CODE TIME
SEC Set carry 38 2
SEC Set Decimal F8 2

Section IV should contain

MNEMONIC VERBAL CODE TIME

JSR Jump to
subroutine 20 6

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	acorn_system1_manual_errata.pdf
	Page 1
	Page 2
	Page 3
	Page 4

