SOLID-STATE DISPLAYS WITH INTEGRAL TTL MSI CIRCUIT CHIP FOR USE IN ALL SYSTEMS REQUIRING A DISPLAY OF BCD DATA

- 6,9-mm (0.270-Inch) Character Height
- TIL308 Has Left Decimal
- TIL309 Has Right Decimal
- Easy System Interface
- Wide Viewing Angle
- Internal TTL MSI Chip With Latch, Decoder, and Driver
- Constant-Current Drive for Light-Emitting Diodes
mechanical data
These assemblies consist of display chips and a TTL MSI chip mounted on a header with a red molded plastic body. Multiple displays may be mounted on $11,43-\mathrm{mm}$ (0.450 -inch) centers.

NOTES: A. Lead dimensions are not controlled above the seating plane.
B. Centerlines of character segments and decimal points are shown as dashed lines. Associated dimensions are nominal.
C. The true-position pin spacing is $2,54 \mathrm{~mm}(0.100 \mathrm{inch})$ between centerlines. Each centerline is located with $0,26 \mathrm{~mm}$ (0.010 inch) of its true longitudinal position relative to pins 1 and 16.

description

These internally-driven seven-segment light-emitting-diode (LED) displays contain a five-bit latch and a decoder/LED driver in a single 16-pin package. A description of the functions of the inputs and outputs of these devices are in the terminal function table.
The TTL MSI circuits contain the equivalent of 78 gates on a single chip. Logic inputs and outputs are completely TTL/DTL compatible. The buffered inputs are implemented with relatively large resistors in series with the bases of the input transistors to lower drive-current requirements to one-half of that required for a standard Series 54/74 TTL input.

Some of the additional features of these displays are as follows:

- Latched BCD and decimal point logic outputs provided to drive logic processors simultaneously with the displayed data
- Minimum number of inputs required . . . 4-line BCD plus decimal point
- Overriding blanking for suppressing entire display or pulse-modulation of LED brightness
- LED test input to simultaneously turn on all display segments and decimal point
- Can be operated in a real-time mode or latched-update-only mode by use of the latch strobe input
- Displays numbers 0 through 9 as well as A, C, E, F, or minus sign
- Can be blanked by entry of BCD 13 or by use of the blanking input
- Decimal point controlled independently with decimal-point latch
- Constant-current-source TTL-LED interface for optimum performance.

The latch outputs except $Q_{D P}$ are active pullup, and each one, except $Q_{D P}$, is capable of driving three standard Series 54/74 loads. The LED driver outputs are designed specifically to maintain a relatively constant on-level current of approximately 7 mA through each LED segment and decimal point. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design. Power dissipation is typically 575 mW with all segments on.

Terminal Functions

PIN		DESCRIPTION
NAME	No.	
BLANKING Input ($\overline{\mathrm{BI}})$	11	When low, will blank (turn off) the entire display. Mus be high for normal operation of the display.
Latch Data Inputs A, B, C, D, DP	$\begin{gathered} 15,10,6 \\ 7,12 \end{gathered}$	Data on these inputs are entered into the latches under the control of the latch strobe input. The binary weights of the inputs are: $A=1, B=2, C=4, D=8$. $D P$ is decimal point latch data input.
Latch Outputs $Q_{A}, Q_{B}, Q_{C}, Q_{D}$, QDP	$\begin{gathered} 4,1,2,3, \\ 14 \end{gathered}$	The BCD data that drives the decoder is stored in the five latches and is available at these outputs. The binary weights of the outputs are: $Q_{A}=1, Q_{B}=2, Q_{C}=4, Q_{D}=8$. $Q_{D P}$ is decimal point latch output.
$\begin{aligned} & \text { LATCH STROBE } \\ & \text { Input (LSS) } \end{aligned}$	5	When low, the data in latches follow the data on the latch inputs. When high, the data in the latches are held constant and are unaffected by new data on the latch inputs.
LED TEST Input ($\overline{\mathrm{LT}}$)	13	When low, will turn on the entire display, overriding the data in the latches and the blanking input. Must be high for normal operation of the display.

FUNCTION TABLE															
FUNCTION	LATCH INPUTS						BLANKING INPUT	$\begin{array}{\|l\|} \hline \text { LED } \\ \text { TEST } \\ \hline \end{array}$	LATCH OUTPUTS					DISPLAY	
	D	C	B	A	DP	STROBE			QD	QC	Q_{B}	$Q_{\text {A }}$	QDP	TIL308	TIL309
0	L	L	L	L	L	L	H	H	L	L	L	L	L	\square	\square
1	L	L	L	H	H	L	H	H	L	L	L	H	H	． 1	1
2	L	L	H	L	L	L	H	H	L	L	H	L	L	2	2
3	L	L	H	H	H	L	H	H	L	L	H	H	H	．${ }^{\text {l }}$	\exists.
4	L	H	L	L	L	L	H	H	L	H	L	L	L	4	4
5	L	H	L	H	H	L	H	H	L	H	L	H	H	． 5	5.
6	L	H	H	L	L	L	H	H	L	H	H	L	L	E	\square
7	L	H	H	H	H	L	H	H	L	H	H	H	H	． 7	7.
8	H	L	L	L	L	L	H	H	H	L	L	L	L	日	日
9	H	L	L	H	H	L	H	H	H	L	L	H	H	． 9	9.
A	H	L	H	L	L	L	H	H	H	L	H	L	L	A	A
Minus Sign	H	L	H	H	H	L	H	H	H	L	H	H	H	．－	－．
C	H	H	L	L	L	L	H	H	H	H	L	L	L	［	［
Blank	H	H	L	H	H	L	H	H	H	H	L	H	H		．
E	H	H	H	L	L	L	H	H	H	H	H	L	L	E	E
F	H	H	H	H	H	L	H	H	H	H	H	H	H	．F	F．
Blank	X	X	X	X	X	X	L	H	X	X	X	X	X		
LED TEST（ $\overline{\mathrm{LT}}$ ）	X	X	X	X	X	X	X	L	X	X	X	X	X	．${ }^{\text {B }}$	日．

$H=$ high level，$L=$ low level，$X=$ irrelevant．
DP input has arbitrarily been shown activated（high）on every other line of the table．
absolute maximum ratings over operating case temperature range（unless otherwise noted）

> Supply voltage, V_{CC} (see Note 1): Continuous
> 5.5 V

> Input voltage (see Note 1) 5.5 V

> Storage temperature range $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

NOTES：1．Voltage values are with respect to network ground terminal．
2．Case temperature is the surface temperature of the plastic measured directly over the integrated circuit．Forced－air cooling may be required to maintain this temperature．
recommended operating conditions

			MIN	NOM	MAX	UNIT
Supply voltage， V_{CC}			4.75	5	5.25	V
Normalilzed fanout from each output， N （to Series 54／74 integrated circuits）	Low logic level	QDP			1	
		$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$			3	
	High logic level	$Q_{\text {DP }}$			3	
		$Q_{A}, Q_{B}, Q_{C}, Q_{D}$			6	
Latch strobe pulse duration， t_{w}			45			ns
Setup time， $\mathrm{t}_{\text {su }}$	Latch data input（DP）before latch strobe（ $\overline{\mathrm{LS}}) \uparrow$		60			ns
Hold time，th	Latch data input（DP）after latch strobe（ $\overline{\mathrm{LS}}) \uparrow$		0			ns
Operating case temperature， T_{C}			0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER			TEST CONDITIONS	MIN	TYPt	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
VIK	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{I}=-12 \mathrm{~mA}$			-1.5	V
VOH	High-level output voltage	QDP	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{IOH}=-120 \mu \mathrm{~A}$	2.4			V
		$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{IOH}=-240 \mu \mathrm{~A}$				
VOL	Low-level output voltage (see Note 3)	$Q_{\text {DP }}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{IOL}=1.6 \mathrm{~mA}$	0.4			V
		$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}^{2}=4.8 \mathrm{~mA}$				
11	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
${ }^{\text {IIH }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.8	mA
IOS	Short-circuit output current	$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	-9		-27.5	mA
		QDP		-1		-3.2	
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad$ All inputs at 0 V		115	180	mA
Iv	Luminous intensity (see Note 4)	Figure $\boldsymbol{\theta}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	700	1200		$\mu \mathrm{cd}$
		DP Input		40	70		
λ_{p}	Wavelength at peak emission		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$, See Note 5		660		nm
$\Delta \lambda$	Spectral bandwidth		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, See Note 5		20		nm

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
NOTES: 3. This parameter is measured with the display blanked.
4. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission on Illumination) eye-response curve.
5. These parameters are measured with all LED segments and the decimal point on.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

PARAMETER	$\begin{gathered} \text { FROM } \\ \text { (INPUT) } \end{gathered}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST C	NDITIONS	MIN	TYP	MAX	UNIT
tPLH	A, B, C, D, DP	$Q_{A}, Q_{B}, Q_{C}, Q_{D}, Q_{D P}$	$C_{L}=15 \mathrm{pF},$$\text { See Figure } 1$	$\mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega$,		35		ns
tPHL						40		

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. All diodes are 1 N 3064 .
C. Measurements mode with $\overline{\mathrm{LS}}$ input grounded.

Figure 1. Load Circuit

TYPICAL CHARACTERISTICS

Figure 2

RELATIVE LUMINOUS INTENSITY
vs
CASE TEMPERATURE

Figure 3

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

