GU-43b

Tetrode

The GU-43B tetrode is used for wideband power amplification at frequencies up to 100 MHz in RF equipment. This tube is generally considered analogous to the 4CX1000.

GENERAL		
Cathode: indirectly heated, oxide-coated.		
Envelope: metal-to-glass.		
Cooling: 100 m ³ /hour forced air.		
Height, mm, at most:	125	
Diameter, mm, at most:	101	
Mass, Kg, at most:	1.5	·

C₁ - grid 1; KP - cathode & heater; P - heater; C₂ - grid 2; A - anode

ENVIRONMENTAL OPERATING CONDITIONS			
Vibration loads:			
frequency, Hz	10-200		
acceleration, m/s ²	58		
Multiple impacts with acceleration, m/s² 342			
Ambient Conditions:			
Temperature, °C	-60 to +150		
Relative humidity at up to +40 °C, %	98		
NOMINAL ELECTRICAL PARAMETERS			
Heater voltage, V		12.6	
Heater current, A		6.6	
Mutual conductance ($V_a = 1KV$, $V_{g2} = 300V$, $I_a = 600mA$, change in $V_{g1} = 2.5V$), mA/V:		45	
Anode current (I_a) with $V_a = 3KV$, $V_{g1} = -50V$, $V_{g2} = 350V$, A:		~0.9	
Negative bias (V_{g1}) with $V_a = 1KV$, $V_{g2} = 350V$, $I_a > 800mA$, V :		20-30	
input capacitance, pF		90	
output capacitance, at most, pF		14	
transfer capacitance, pF		<0.1	
Warm up time, s:		<180	
AB ₁ Output, $V_a = 3KV$, $I_a \sim 0.9A$, $V_{g1} = -50V$, $V_{g2} = 350V$, $I_{g1} < 0mA$, $I_{g2} < 80mA$, KW:		>1.6	
Designed Tube Life (hours)		>1000	
ELECTRICAL PARAMETER LIMITS			
Heater voltage, V	12.6 +/- ?		
Heater current, A	6-7.2		
ut capacitance, pF 80-100			
output capacitance, pF 10-18			
Maximum CW Anode voltage (V _a), KV:	3.3		

"Maximum" Control Grid voltage (V _{g1}), V	-200
Maximum Screen Grid voltage (V _{g2}), V	500
CW cathode current (I _c), A:	1
Peak cathode current (I _c), A:	3.2
Anode Dissipation, W:	1000
Screen Grid (G2) Dissipation, W:	28
Control Grid (G1) Dissipation, W:	5
Temperature at envelope (hottest point), °C	150
Frequency, MHz:	<100

Averaged Anode Characteristic Cooling Curves: Anode T °C plotted against Airflow, m^3 /sec vs P_a

Averaged Anode Characteristic Curves: — . — . — P_a Dissipation: U_f = 12.6V; U_{g2} = 350V;

Anode Voltage, KV

Averaged Anode Characteristic Curves: U_f = 12.6V; U_{g2} = 350V

Averaged Anode Characteristic Curves: U_f = 12.6V; U_{g2} = 350V