T-74-05-01

ECG1169, ECG1239

5.5 W Audio Power Amplifier

Features

- High output power
- High voltage gain
- High input impedance
- High hum rejection

ECG1169 and ECG1239 are monolithic integrated circuits designed for use as a 5.5 W power amplifier for automotive radio and stereo systems. ECG1169 is for use with a load of over four ohms and ECG1239 is suitable for a two-ohm load.

Absolute Maximum Ratings (TA = 25°C)

Characteristic	Symbol	Ratings	Unit	Note		
Supply Voltage	Vcc	18	V			
Output Current	lo(peak)	4.5	Α			
Power Dissipation	PT	6	W	$\theta_{i-c} = 10^{\circ}C/W$		
Storage Temperature	T _{stg}	-55 to +125	°C			
Junction Temperature	Tj	125	°C			
Operating Temperature	Topr	-20 to +70	°C	$\theta f = 8^{\circ}C/W$ $P_{loss} < 3 W$		

Electrical Characteristics ($V_{CC} = 13.2 \text{ V}, f = 1 \text{ kHz}, R_g = 600 \text{ Ohms}, T_A = 25^{\circ}\text{C}$)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Quiescent Current	Ια		20	50	100	mA
Voltage Gain	GV	R ₁₀₁ = 82 ohms	52	55	58	dB
Output Power	Pout	THD ≤ 10%	4.5	5.5		W
Total Harmonic Distortion	THD	$P_{out} = 0.5 W$		0.3	1.5	%
Output Noise Voltage	٧N	$R_g = 10 \text{ kohms},$ BPF = 70 Hz to 20 kHz			5.0	mV
Input Resistance	Rin			36		kohms

377

ECG1169, ECG1239

T-74-05-01

Circuit Schematic and External Parts

Printed Circuit Board (Bottom View)

Typical External Parts

- (1) C₁₀₁: Input coupling capacitor. Use the capacitor over 4.7 µF. If use a too small capacitor in C₁₀₁, output noise will be greater.
- (2) C₁₀₂: It functions as the elimination of supply voltage ripple. Use the capacitor over 220 μF.
- (3) C₁₀₃: Determine C₁₀₃ from the value of a negative feedback resistor R₁₀₁ and a low cutoff frequency f_L as follows:

$$C_{103} = \frac{1}{2 f_L \times R_{101}}$$
 (F)

In case of the elimination of shock noise at power switch "on", make the capacitor ratio of C₁₀₂ and C₁₀₃ 4 to 1.

(4) C₁₀₄, C₁₀₅, C₁₀₆, C₁₁₀:
Capacitor for use as the prevention of oscillations. C₁₀₅, C₁₀₆ and C₁₁₀ have no relation to a frequency characteristic, but C₁₀₄ determines a high cutoff frequency f_H. For example, making C₁₀₄ the value shown in Fig. 2 (25 pF), f_H is approximately 30 kHz (-3 dB). C₁₀₆ must be polyester film capacitor.

- (5) C_{107} : Output coupling capacitor. A low frequency f_L is 40 Hz at $C_{107} = 1000 \, \mu\text{F}$ and $R_L = 4 \, \text{ohms}$.
- (6) C₁₀₈: Boot strap capacitor. Use the capacitor of 47 μF.
- (7) C₁₀₉: It prevents the oscillation due to the resistance of power supply line.
- (8) R₁₀₁: It determines the closed loop voltage gain Gy. As the ECG1169 has an extremely high open loop voltage gain, Gy is determined as follows:

$$G_V = 2 \times \frac{R8 + (R9//R10)}{R_{101}} -$$

(R9//R10 is a parallel resistance of R9 and R10). For example, making R₁₀₁ the value as shown in Fig. 2 (82 ohms), Gy is 55 dB, because of R8 + (R9//R10) = 22.5 kohms. When a high Gy is required, make both R₁₀₁ and C₁₀₁ lower.

If make only R₁₀₁ lower, the total harmonic distortion increases at high frequency.

ECG1169, ECG1239

378

T-74-05-01

- (9) R₁₀₂: If a speaker is connected with output terminal after the power switch on, a large current flows to charge the output coupling capacitor C₁₀7. R₁₀₂ prevents the destruction due to this charging current.
- (10) GND: TAB must be grounded. On a printed board, resistance between TAB and 9 pin should be pattern-designed lower than 10 Mohms and TAB should be completely fastened by screws.

Typical Characteristics

Maximum Power Dissipation and Thermal Resistance vs Heat Sink Area

Maximum Power Dissipation Curve

Total Harmonic Distortion vs Power Output

Total Harmonic Distortion vs Frequency

Voltage Gain vs Frequency

379

ECG1169, ECG1239