REALISTIC®

Service Manual

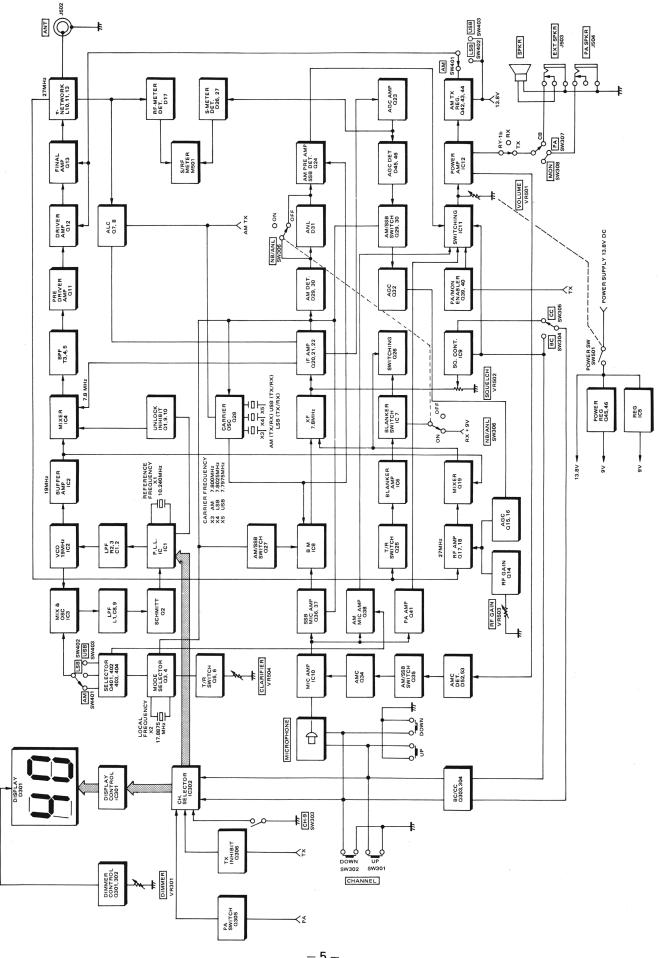
TRC-480

40-CHANNEL AM/SSB MOBILE TRANSCEIVER

Catalog Number: 21-1563

CONTENTS

SPECIFICATIONS
BLOCK DIAGRAM 5
PRINCIPLES OF OPERATION
DISASSEMBLY
ALIGNMENT PREPARATION
ALIGNMENT POSITIONS AND POINTS
PLL SECTION ALIGNMENT CHART
TRANSMITTER SECTION ALIGNMENT CHART 14, 15
RECEIVER SECTION ALIGNMENT CHART
NOISE BLANKER ALIGNMENT CHART
VCO OUTPUT FREQUENCY, IC1 INPUT FREQUENCY AND CODE TABLE
PLL OPERATION CHECK (TRANSMIT MODE)
PLL OPERATION CHECK (RECEIVE MODE)
AF OPERATION CHECK
TROUBLESHOOTING GUIDE
WIRING DIAGRAM (Main P.C.B.)
WIRING DIAGRAM (Channel Control P.C.B.)
WIRING DIAGRAM (Master Interconnection)
MAIN P.C. BOARD PARTS LOCATION (TOP VIEW)
MAIN P.C. BOARD PARTS LOCATION (BOTTOM VIEW)
CHANNEL CONTROL P.C. BOARD PARTS LOCATION (TOP VIEW)
CHANNEL CONTROL P.C. BOARD PARTS LOCATION (BOTTOM VIEW)
MODE SWITCH P.C. BOARD PARTS LOCATION (TOP VIEW)
MODE SWITCH P.C. BOARD PARTS LOCATION (BOTTOM VIEW)
LED P.C. BOARD PARTS LOCATION (TOP VIEW)
LED P.C. BOARD PARTS LOCATION (BOTTOM VIEW)
PA/EXT SPKR JACK P.C. BOARD PARTS LOCATION (TOP VIEW)
PA/EXT SPKR JACK P.C. BOARD PARTS LOCATION (BOTTOM VIEW)
MIC JACK P.C. BOARD PARTS LOCATION (TOP VIEW)
MIC JACK P.C. BOARD PARTS LOCATION (BOTTOM VIEW)
ELECTRICAL PARTS LIST
MECHANICAL PARTS LIST
ACCESSORY LIST
SEMICONDUCTOR LEAD IDENTIFICATION
IC LEAD IDENTIFICATION AND EQUIVALENT CIRCUIT
SEMICONDUCTOR VOLTAGE READINGS
SCHEMATIC DIAGRAM 52, 53
SCHEMATIC DIAGRAM OF MICROPHONE 54
EXPLODED VIEW


SPECIFICATIONS

RF Output	TRANSM AM at 25°C	IITTER							
RF Output	AM at 25°C								
RF Output			±0.0005%	±0.005%					
•	SSB at 25°C		±0.0005%	±0.005%					
	AM 13.8 V DC, No Mo	dulation	4 W max.	3.6 ∼ 4.4 W					
Modulation Distortion	SSB 13.8 V DC		12 W PEP max.	10 ~ 13.2 W					
Modulation Distortion	80% MOD at 1 kH:	z	3%	8%					
Spurious Harmonic Emission	AM		−65 dB	-60 dB					
	SSB		-65 dB	60 dB					
Carrier Suppression	SSB		-50 dB	-40 dB					
Unwanted Sideband Suppressi	on 2.5 kHz (SSB)		-55 dB	-40 dB					
Current Drain	No Modulation (Al	VI)	2100 mA	2500 mA					
	(SS	SB)	800 mA	1200 mA					
	80% MOD (AM) at	1 kHz	2500 mA	3000 mA					
	10 W PEP Two-Toi		2100 mA	3000 mA					
Modulation Frequency Respon	l l								
	Lower 450 Hz		AM SSB -6 dB	AM SSB -6 ± 3 dB					
	Upper 2.5 kHz		AM SSB -6 dB	AM SSB -6 ± 3 dB					
Carrier Power Uniformity	Ch-to-Ch with No I	MOD (AM)	0.3 W	0.5 W					
MIC Input Level Uniformity	Ch-to-Ch for 4 W C		2 dB	3 dB					
	1000 Hz Single-To								
Intermodulation Distortion	500 and 2400 Hz 7		-30 dB	− 25 dB					
MIC Input Level Uniformity	LSB/USB 4 W Out		00 ab	20 05					
me mpat zoror omiormity	1.5 kHz Single Tor		1 dB	3 dB					
Microphone Sensitivity	AM 50% MOD at 1		1.0 mV	2.0 mV					
Goldinativity	SSB 4 W PEP	KI IZ	1.0 mV	2.0 mV					
AMC Range	AM 50~100% MO	D at 1 L L 2	60 dB	40 dB					
Alvio Hallye	SSB 10 ~ 13.2 W		60 dB	40 dB					
				40 00					
	RECEI	VEK		T					
Max. Sensitivity	AM		0.2 μV	0.5 μV					
0	SSB		0.2 μV	0.5 μV					
Sensitivity	for 10 dB S/N	AM	0.5 μV	1 μV					
100 5		SSB	0.25 μV	0.5 μV					
AGC Figure of Merit	50 mV, 10 dB	AM	90 dB	80 dB					
		SSB	90 dB	80 dB					
Overload AGC Characteristics	10 mV to 1 V	AM	±2 dB	±5 dB					
		SSB	±2 dB	±5 dB					
Overall Audio Fidelity	at 6 dB Down								
	Upper Frequency	AM	2100 Hz	1750 ~ 2500 Hz					
		SSB	4000 Hz	3000 ∼ 5000 Hz					
	Lower Frequency	AM	450 Hz	300 ∼ 650 Hz					
		SSB	450 Hz	300 ∼ 650 Hz					
Cross Modulation, RS Standar	d AM		60 dB	50 dB					
Adjacent Channel Selectivity	10 kHz	AM	70 dB	60 dB					
		SSB	70 dB	60 dB					
Maximum Audio Output Power			5 W	4 W					
	SSB		5 W	4 W					
Audio Output Power	10% THD	SSB	4.5 W	3.5 W					
		AM	4.5 W	3.5 W					
THD AM	500 mW Output 1	mV							
	Input 30% (MOD)	at 1 kHz	3%	6%					
	80% (MOD)	1	5%	10%					
THD SSB	1 mV Input 1 kHz								
	Single Tone		3%	6%					

DESCRIPTION	CONDITION	NOMINAL	LIMIT				
RF Gain Control Range at Max.	AM	40 dB	30 ∼ 50 dB				
Sensitivity	SSB	40 dB	30 ∼ 50 dB				
S/N Ratio	AM Input 1 mV	40 dB	35 dB				
	SSB	40 dB	35 dB				
Squelch Sensitivity at Threshold	AM	0.5 μV	1 μV				
,	SSB	0.5 μV	1 μV				
Squelch Sensitivity at Tight	AM	1000 μV	$350 \sim 2800 \mu\text{V}$				
	SSB	1000 μV	$350 \sim 2800 \mu\text{V}$				
Skirt Rejection (±20 kHz)	AM	80 dB	70 dB				
S Meter Sensitivity at "S-9"	AM	100 μV	50 ~ 200 μV				
(No Modulation AM)	SSB	100 μV	$50 \sim 200 \mu\text{V}$				
Image Rejection Ratio	AM	80 dB	60 dB				
fo + (2 x 7.8 MHz)	SSB	80 dB	60 dB				
1/2 IF Rejection Ratio	AM	60 dB	50 dB				
-	SSB		1				
fo + 7.8 MHz/2		60 dB 80 dB	50 dB				
IF Rejection Ratio 7.8 MHz	AM	1	60 dB				
0.311.4. 5	SSB	80 dB	60 dB				
Oscillator Drop-out Voltage	AM	9 V	10 V				
	SSB	9 V	10 V				
Current Drain at No Signal	AM	400 mA	600 mA				
	SSB	400 mA	600 mA				
Current Drain at Maximum	AM	1200 mA	1500 mA				
	SSB	1200 mA	1500 mA				
Clarifier Range	AM	±1.2 kHz	±0.6 ~ ±1.8 kHz				
	SSB	±1.2 kHz	±0.6 ~ ±1.8 kHz				
Spurious Rejection Ratio							
Within Band	AM	65 dB	60 dB				
	SSB	65 dB	60 dB				
Outside of Band	AM	60 dB	50 dB				
	SSB	60 dB	50 dB				
	PUBLIC ADDRESS						
Missonhana Consisiuisu	3 W Output 1 kHz	1 mV	2 mV				
Microphone Sensitivity Output Power at Maximum		1	1				
•	Input 15 mV	5.0 W	4.0 W				
Output Power	10% Distortion	4.5 W	4.0 W				
Audio Fidelity	at 6 dB Down	252.11	05011-				
	Lower Frequency	350 Hz	250 Hz				
	Upper Frequency	2900 Hz	3500 Hz				
Current Drain	No Signal	400 mA	600 mA				
	Max. Output Power	1500 mA	2000 mA				
	GENERAL						
Frequency Coverage	29.965 to 27.405 MHz						
Channel	40 Channels						
Frequency Control	Crystal Control (PLL Sy	stem)					
Frequency Tolerance	Less than ± 0.005%						
Operating Temperature	-30°C to +60°C						
Humidity	10 to 95%						
Microphone	Dynamic Type with PTT	Switch					
Operating Voltage	13.8 V DC Nominal (12.						
Power Consumption	Pos./Neg. Ground 40 Wa						
Meter	TX Power and Signal Str						
Size	210 (W) x 62 (H) x 258		/2" x 10-1/2")				
9120	210 (11) 1 02 (11) 1 200	(2, mm (3 1/4 A 2 1	,_ ,, ,, ,, ,,				

NOTE: Nominal Specs represent the design specs: all units should be able to approximate these — some will exceed and some may drop slightly below these specs. Limit Specs represent the absolute worst condition which still might be considered acceptable; in no case should a unit perform to less than within any Limit Spec.

BLOCK DIAGRAM

PRINCIPLES OF OPERATION

This section of the Service Manual provides a brief technical description of unique or special circuits which you might otherwise find a little hard to understand, may not notice or be able to troubleshoot.

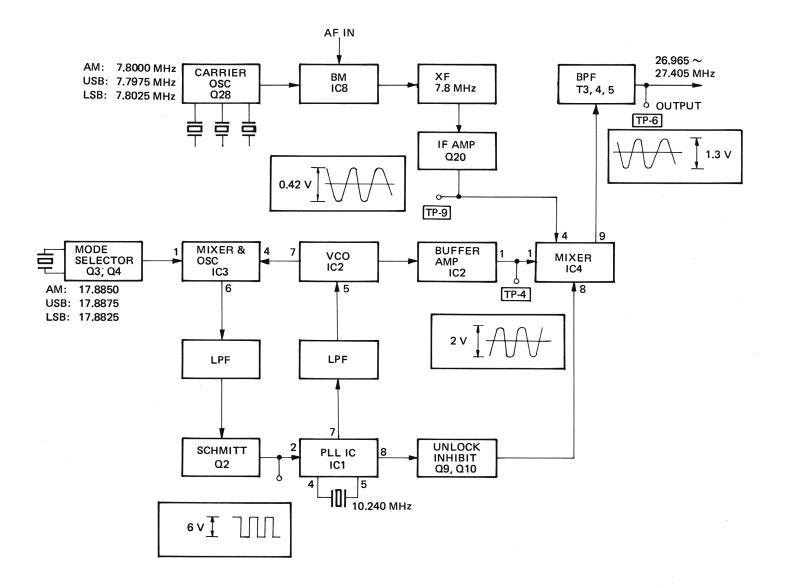
PLL CIRCUITRY

The TRC-480 uses Digital Phase Locked Loop circuitry to synthesize each of the channel frequencies. The PLL circuitry consists of IC-1 (Programmable Counter, Reference Frequency Divider and Phase Detector), IC-2 (Voltage Controlled Osc.), IC-3 (Mixer, Osc.), Reference Frequency Osc. (10.24 MHz), Low Pass Filters and related circuits.

Refer to the Block Diagram as you read the following description. A 10.24 MHz Crystal is used as a reference frequency. The crystal is connected between Pins 4 and 5 of the PLL IC, IC-1.

Pressing channel selector switch (UP/DOWN) provides IC-302 (Channel Scanning System) with an enable level at Pins 13 and 14 respectively. Then IC-302 prepares binary coded information to be transferred to IC-1. The information determines "N", the divisor which produces the required output frequency for each channel (precisely spaced 10 kHz apart).

Three different frequency signals which correspond with each mode are generated at IC-3. Those are: 17.885 MHz in AM Mode, 17.8875 MHz in USB Mode, and 17.8825 MHz in LSB Mode. The signals are mixed by IC-3 Mixer with the IC-2 VCO frequency (See Table on page 18). The resulting down-mix produces signals of 1.28 through 1.72 MHz, which pass through LPF, and an amplifier, and then are applied to Pin 2 of PLL IC, IC-1. These frequencies are divided by "N" (128 through 172) internally at IC-1; the resulting output will always be 10 kHz.


Also, the Reference Oscillator, 10.24 MHz, is divided by 1024 (again, internally by IC-1) resulting in another 10 kHz frequency.

These two 10 kHz signals are fed to the Phase Detector. An error voltage is generated by the Phase Detector, which is in proportion to the phase difference between these two 10 kHz signals. This error voltage appears at Pin 7 of IC-1 and passes through the LPF where the error voltage is integrated, and harmonics and noise are filtered out. The resulting DC voltage is applied to the Varicap Diode (part of VCO) whose capacity varies with applied DC voltage. Thus the output frequency of VCO is corrected. With proper circuit design and precise adjustments, the VCO frequency is accurate and precise. When the system is "locked", the Phase Detector senses no phase differences between the two 10 kHz signals and the VCO generates a frequency which is as accurate and stable as the reference crystal oscillator.

For AM Mode, a 7.8000 MHz signal, produced by Crystal X3 is used for the carrier. This signal is fed to Crystal Filter XF-1 through IC-8, and is mixed with the VCO Signals (19.165 to 19.605 MHz) in IC-4 to produce the desired frequency signal (26.965 to 27.405 MHz).

For USB Mode, a 7.7975 MHz signal, produced by Crystal X5 is used for the carrier. This signal is fed to the Balanced-Modulator IC-8 where it is combined with the audio signal. The resulting signal from the Balanced Modulator contains two signals. Only the upper sideband is needed for USB Mode. Crystal Filter XF-1 eliminates the unnecessary lower sideband, and only the upper sideband (USB) appears at its output. In IC-4, the USB Signal is mixed with the VCO Signals (19.1675 to 19.6075 MHz) to produce the desired frequency signal (26.965 to 27.405 MHz).

For LSB Mode, the circuit function is the same as for USB Mode, except Crystal X4 (7.8025 MHz) provides the carrier frequency and the VCO Signals are 19.1625 to 19.6025 MHz.

CHANNEL CONTROL SYSTEM

1. UP/DOWN Operation

IC-302 produces a BCD code to determine divisor "N" for PLL. OSCillator (in IC-302) produces a control signal, which is waveformed by Clock Generator. When UP (or DOWN) button is pressed, pin 14 (or 13) level goes low. The C-MOS Inverter applies resulting high level to the Control Circuit. The output from the Control Circuit is fed to UP/Down Counter, which in turn is processed to the Code Converter ROM, where it is encoded to BCD.

2. Search Operation

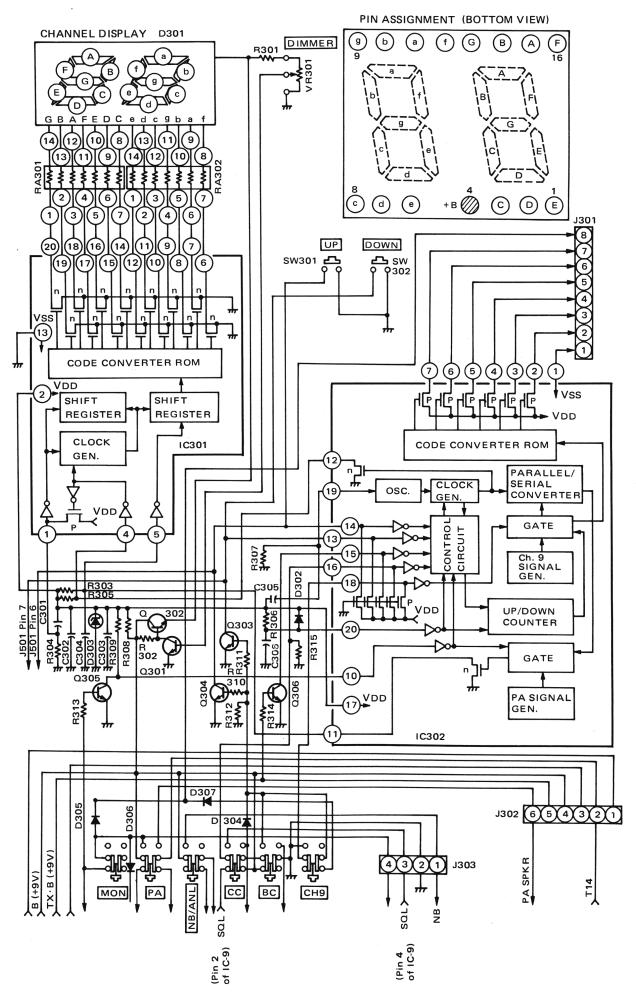
IC-302 has logic control in the Control Circuit which controls upwards counting when both pins 13 and 14 go low. Pressing Busy (or Clear) Search button will turn "on" Q303 and Q304, thus pins 13 and 14 go low. Pin 16 of IC-302 is a "pause" control pin; if the level of this pin becomes low, upwards counting (caused by the low level at pins 13 and 14) will stop.

Pin 2 of IC-9 is low when squelch is "open", while pin 4 of IC-9 is low when squelch is "closed". In Busy Search mode, low level from pin 2 of IC-9 is added to pin 16 of IC-302 via Clear SEARCH switch, and Searching stops where there is a signal. In Clear Search mode, low level from pin 4 of IC-9 is added to pin 16 via pin 3 of J303 and Clear SEARCH switch.

3. Channel Control Inhibit during Transmit

During transmitting, Q306 turns on and pin 15 of IC-302 becomes low, signalling the Control Circuit to shut off.

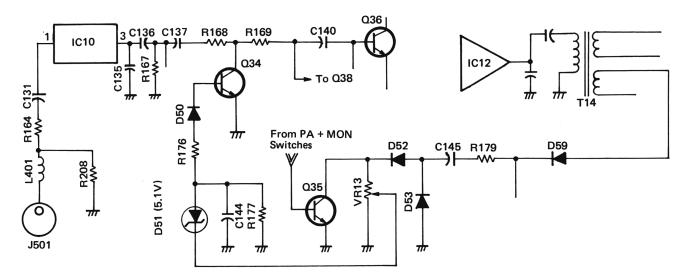
4. Channel 9 Priority


When Channel 9 button is pressed, pin 18 goes low and signals the Control Circuit and Gate to apply only Channel 9 code to Code Converter ROM.

5. PA Mode

When PA button is pressed, Q305 turns on and pin 10 level becomes low. This signals the Control Circuit and the Gate to operate in PA mode. When MONitor button is also pressed, Q305 turns off and CB incoming calls can be monitored.

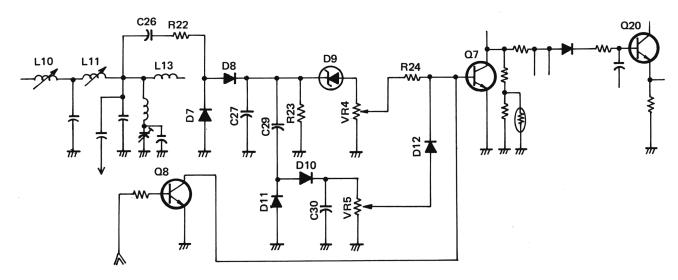
6. Channel Number Display


The Shift Register in IC-301 converts serial data output from pin 11 of IC-302 to parallel, and the Code Converter ROM will drive the Channel Display LED's to light the correct number(s) or "PA" display.

AUTOMATIC MODULATION CONTROL CIRCUIT

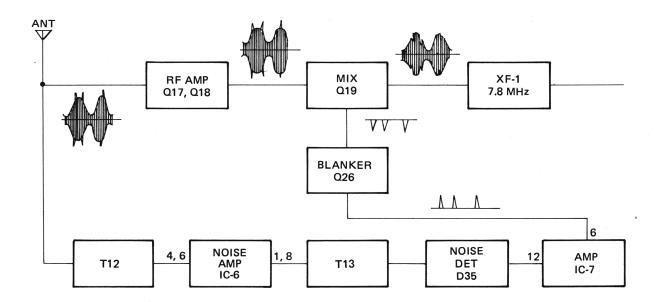
The Automatic Modulation Control (AMC) Circuit consists of Q34 and D50 - 53.

Mic input signal is fed to pin 4 of Microphone Jack J501 and through R164 and C131 to pin 1 of IC-10. The amplified mic signal (from pin 3 of IC-10) is applied to the base of Q38 and is amplified once again. This signal is conveyed to IC-12 the Audio Frequency Power Amplifier through IC-11. IC-12 drives T14, whose secondary couples a portion of the signal through D59 and R179 to AMC detector diodes D52 and D53. D51 (5.1 V Zener) is connected to the output of D52/D53 through VR13; when the detected DC voltage from D52/D53 exceeds 5.1 V, D51 conducts and applies DC voltage to the base of Q34 through R176 and D50, decreasing the potential at the collector of Q34. VR13 is adjusted for less than 100% modulation level. Q35 disables the AMC when PA button is pressed in.

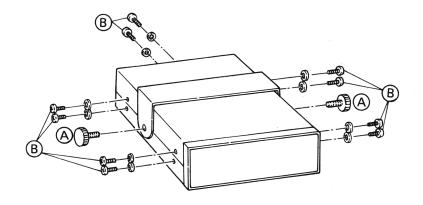

AUTOMATIC LIMITER CONTROL

The Automatic Limiter Control (ALC) circuit consists of D7, D8, D9 (5.1 V Zener), D10 - 12, Q7 and Q8. A portion of the transmitter's RF modulated signal is detected by D7 and D8 (for single - tone modulation). If the detected DC voltage exceeds 5.1 V, a positive voltage is applied to the base of Q7. This decreases the potential at the collector of Q7. Thus the base of Q20 is less-biased than before. In this way the desired RF output level is determined.

VR4 is adjusted to set maximum RF power level to less than 12 W PEP. (Single tone)


RF signals modulated by two or more different tones are detected by D7, D8, D10 and D11. The detected DC voltage is applied to the base of Q7 and the potential at the base of Q20 is controlled in the same way. VR5 is adjusted to set maximum RF power level to less than 12 W PEP. (Two tone)

In AM Transmit mode, Q8 turns on and disables ALC.

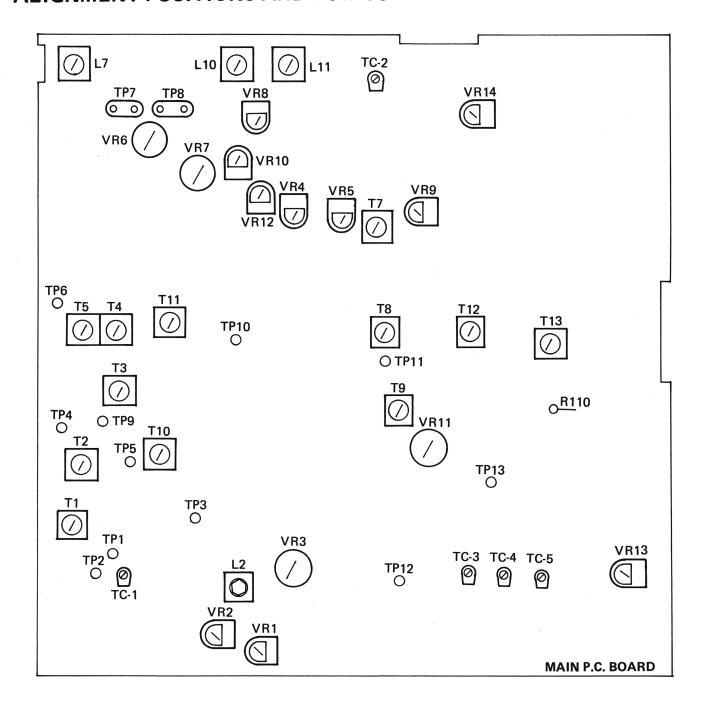

NOISE BLANKER

Noise pulses are amplified by IC-6 and detected by D35. Detected pulses are then amplified by IC-7. IC-7 applies a positive pulse to the base of Q26, thus decreasing its collector impedance to shunt Q19 gate impedance during the duration of the noise pulses. The most objectional noise pulse frequencies are distributed around 40 MHz, thus T12 and T13 are tuned to this frequency.

DISASSEMBLY

- 1: Remove two bracket screws (A) and bracket.
- 2: Remove 10 cabinet mounting screws (B).
- 3: Remove cabinet top and bottom.

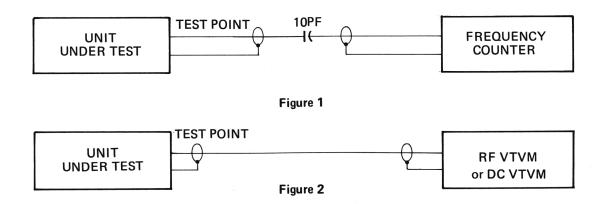
ALIGNMENT PREPARATION


Test instruments required

- 1. Oscilloscope
- 2. AC VTVM
- 3. DC VTVM
- 4. Frequency Counter
- 5. 8Ω Dummy Load
- 6. RF Signal Generator

- 7. Power Meter (50 Ω)
- 8. 50Ω Dummy Load
- 9. AF Signal Generator (2)
- 10. 54 MHz Monitor Receiver (or Spectrum Analyzer)
- 11. DC Current Meter
- 12. Pulse Generator

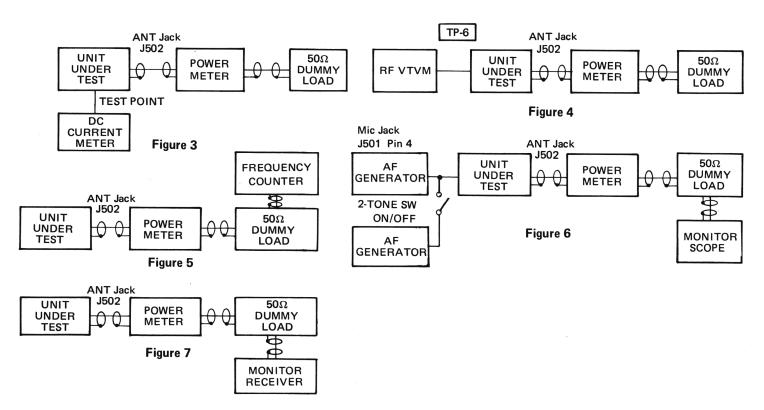
NOTE: Use non-metallic tuning tools. Allow instruments and unit 15 minutes to warm-up prior to alignment. Maintain Generator output level at minimum necessary to obtain usable output readings (this will avoid distortion, saturation and clipping).


ALIGNMENT POSITIONS AND POINTS

PLL SECTION ALIGNMENT CHART

Step	Control Setting	Test Instrument	Test Instrument Connection	Remarks					
1	Power Switch : ON	Frequency Counter	Refer to Figure 1 (TP-1/TP-5)	Adjust TC-1 for 10.240 MHz					
2	Power Switch : ON CLARIFIER : Center Mode : USB	Frequency Counter	Refer to Figure 1 (TP-3/TP-5)	Adjust L2 for 17.8875 MHz					
3	Power Switch : ON CLARIFIER : Center Mode : LSB	Frequency Counter	Refer to Figure 1 (TP-3/TP-5)	Adjust VR2 for 17.8825 MHz					
4	Power Switch : ON CLARIFIER : Center Mode : AM	Frequency Counter	Refer to Figure 1 (TP-3/TP-5)	Adjust VR1 for 17.885 MHz					
5	Power Switch : ON CLARIFIER : Center Mode : AM CH : 1 and 40	DC VTVM	Refer to Figure 2 (TP-2/TP-5)	Adjust T1 for 2 V readings at CH1, 3.5 — 4 V readings at CH40.					
6	Power Switch : ON CLARIFIER : Center Mode : USB CH : 18	Frequency Counter	Refer to Figure 1 (TP-4/TP-5)	Adjust L2 for 19.3775 MHz					
7	Power Switch : ON CLARIFIER : Center Mode : LSB CH : 18	Frequency Counter	Refer to Figure 1 (TP-4/TP-5)	Adjust VR2 for 19.3725 MHz					
8	Power Switch : ON CLARIFIER : Center Mode : AM CH : 18	Frequency Counter	Refer to Figure 1 (TP-4/TP-5)	Adjust VR1 for 19.3750 MHz					
9	Same as Step 8	RF VTVM	Refer to Figure 2 (TP-4/TP-5)	Adjust T2 for max.					

NOTE: You can check each channel frequency (CH-1 through CH-40) at TP-2 after Step 8. The frequency should be as shown on Table on page 18.


TRANSMITTER SECTION ALIGNMENT CHART

NOTE: Alignment of Transmitter Section must not be done until PLL section alignment is completed.

Step	Control Setting	Test Instrument Connection and Setting	Admet							
1	POWER Switch : ON Mode : AM	Connect Frequency Counter to TP-12. (Figure 1)	TC-3	Frequency Adjustment Adjust TC-3 for 7.800 MHz						
2	POWER Switch : ON Mode : USB	Same as Step 1	Frequency Adjustment Adjust TC-5 for 7.7975 MHz							
3	POWER Switch : ON Mode : LSB	Same as Step 1	Frequency Adjustment Adjust TC-4 for 7.8025 MHz							
4	POWER Switch : ON CH : 18 Mode : LSB or USB TX : ON	Connect DC Current Meter to TP-7.` Connect RF-Power Meter and 50Ω Dummy Load to ANT Jack J502. (Figure 3)	VR-6	Current Adjustment Adjust VR-6 for approx. 20 mA						
5	Same as Step 4	Connect DC Current Meter to TP-8. Connect RF-Power Meter and 50Ω Dummy Load to ANT Jack J502. (Figure 3)	Current Adjustment Adjust VR-7 for approx. 40 mA							
6	POWER Switch : ON CH : 18 Mode : AM TX : ON	Connect RF VTVM to TP-6. Connect RF-Power Meter and 50Ω Dummy Load to ANT Jack J502. (Figure 4)	Alignment of Power Stage Adjust T3, T4 and T5 for max. on RF VTVM.							
~ 7	POWER Switch : ON CH : 18 Mode : AM TX : ON	Connect RF-Power Meter and 50Ω Dummy Load to ANT Jack J502 (Figure 5)	L7 L10 L11	Alignment of Power Stage Adjust L7, L10 and L11 for max. output						
8	Same as Step 7	Same as Step 7	VR-14	Power Output Adjustment Adjust VR-14 for 4 W output						
9	Same as Step 7	Connect Frequency Counter and 50Ω Dummy Load to ANT Jack J502 (Figure 5)	VR-3	Frequency Adjustment Adjust VR-3 for 27.175 MHz						
10	POWER Switch : ON CH : 18 Mode : USB or LSB TX : ON	Connect RF Power Meter, 50Ω Dummy Load and Monitor Scope to ANT Jack J502. (Figure 6)	VR-11	Adjustment of Balanced Modulator Adjust VR-11 for min. output						
11	POWER Switch: ON CH: 18 Mode: AM TX: ON	Connect RF Power Meter, Dummy Load and Monitor Scope to ANT Jaj J502. Connect AF Generator (1 kHz) to Pin 4 of MIC Jack J501. (Figure Adjust AF Generator so that the waveform on Monitor Scope shows 5 modulation. Calculation of Modulation Degree. Mod. $\frac{A-B}{A+B} \times 100$ Mod. (%): Modulation Degree								

12	Same as Step 11	Same instrument connection as Step 11. Increase AF Generator output +30 dB from 50% modulation output level.	VR-13	Adjustment of AMC Adjust VR-13 for 90 — 100% Mod. (but not so that over Mod. occurs).
13	POWER Switch: ON CH: 18 Mode: USB or LSB TX: ON	Same instrument connection as Step 12. Set AF Generator output to 10 mV.	VR-4	Adjustment of ALC (single tone) Adjust VR-4 for 10 – 12 W output.
		Connect 50Ω Dummy Load		Adjustment of ALC (two tone)
14	Same as Step 13	and RF-Power Meter to ANT Jack J502. Connect two AF Generators to Pin 4 of Mic Jack J501. Set one AF Generator to 500 Hz and the other to 2400 Hz, output to 10 mV. (Figure 6)	VR-5	Adjust VR5 for 10 — 12 W output.
				Adjustment of Power Indicator
15	Same as Step 7	Same as Step 7	VR-8	Adjust VR-8 so that the unit's Meter reads at 4.
	POWER Switch : ON CH : 18	Connect 50Ω Dummy Load, RF Power Meter and 54 MHz		Alignment of 2nd harmonic/ spurious radiation.
16	Mode: AM TX: ON	Monitor Receiver (or Spectrum Analyzer, if available) to ANT Jack J502. (Figure 7)	TC-2	Adjust TC-2 for minimum reading on the scope.

NOTE: You can check each channel frequency (CH-1 through CH-40) at J502 after Step 9. The frequency should be as shown on Table on page 18.

RECEIVER SECTION ALIGNMENT CHART

NOTE: Alignment of Receiver Section must not be done until PLL Section and Transmitter Section alignment is completed.

Step	Control Setting	Test Instrument	Signal Generator Setting	Adjust	Remarks
1	POWER Switch: ON RF GAIN: Max. SQUELCH: Min. VOLUME: Max. CH: 18 Mode: AM	Connect Oscilloscope and AC VTVM to EXT SPKR Jack J503 across 8 ohm Dummy Load. Connect RF Signal Generator to ANT Jack J502. (Figure 8)	Freq. 27.175 MHz (Channel 18) at 1 kHz 30% Modu- lation. Set output level to minimum necessary	T7 T8 T9 T10 T11	Alignment of RF Adjust T7, T8, T9, T10 and T11 for Max. S/N on Oscilloscope and AC VTVM.
2	Same as Step 1	Same as Step 1	Set output level to 100μV	VR-10	Adjustment of S-Indicator Adjust VR-10 so that the unit's S-Meter reads 9.
3	POWER Switch: ON RF GAIN: Max. SQUELCH: Max. VOLUME: Max. CH: 18 Mode: AM	Same as Step 1	Set output Level to 1 mV	VR-12	Adjustment of SQUELCH Adjust VR-12 to the point where waveform just appears.
4	POWER Switch: ON RF GAIN: Max. SQUELCH: Min. VOLUME: Set AF output level for approx. 0.775 V (0 dB) with 100 μ V RF input, with VR-9 set to full counter clockwise position CH: 18 Mode: AM	Same as Step 1	Set SG output to 100 µV before adjustment	VR-9	Adjustment of AGC Increase RF input level to 100 mV, adjust VR-9 for AF output of 0.775 V (0 dB).

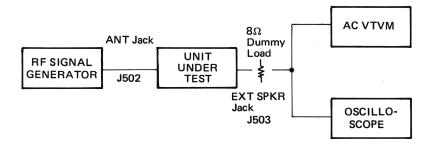


Figure 8

NOISE BLANKER ALIGNMENT CHART

Without Pulse Generator

Control Setting	Test Instrument Connection and Setting	Adjust	Remarks
POWER Switch : ON	Connect RF Signal Generator to ANT Jack J502. Set Freq. to 40 MHz, and output to 10 μ V. Connect DC VTVM to the both ends of R110 (Figure 9).	T12 T13	Adjust T12 and T13 for max. reading on DC VTVM.

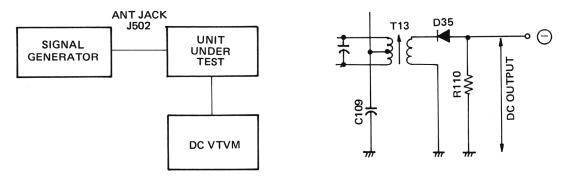


Figure 9

Using Pulse Generator

Control Setting	Test Instrument Connection and Setting	Adjust	Remarks
POWER Switch: ON SQUELCH: Min. VOLUME: Max. CH: 18 (27.175 MHz)	Connect Signal Generator and Pulse Generator to ANT Jack J502. Set SG Freq. to 27.175 MHz, and output to 1 μ V. Set PG pulse width to 1 μ Sec, cycle to 10 m Sec, and output to 1 V P-P. Connect Oscilloscope to EXT SPKR Jack J503, across 8 ohm Dummy Load. (Figure 10)	T12 (or T13)	Adjust T12 (or T13) for max. S/N ratio on oscilloscope.

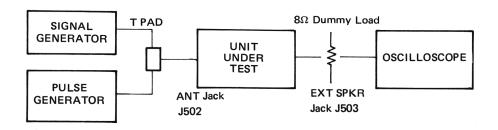
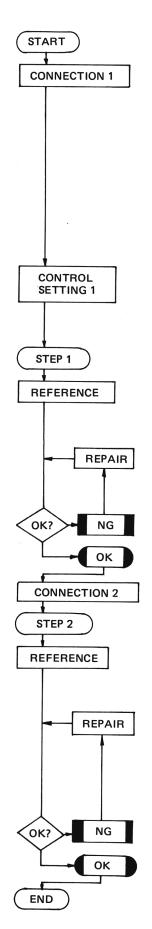
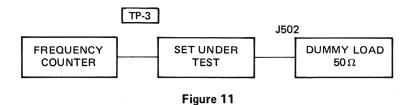



Figure 10


VCO OUTPUT FREQUENCY, IC1 INPUT FREQUENCY AND CODE TABLE

	Τ.,				,]	7					٦														7	٦		7		П	T	\neg							1		_
	15	-	-	0	0	-	0		-	0	-	0	0	_	0		1	0	1	0	0	_			-	0	0		0		0		0		0	1	0	1	0	_	0
m ÷	4	0	0	-	0	0	-	-	0	-	-	0	-	-	0	0	-	0	0	1	0	0	-	0	-	0	-	-	0	0	-	-	0	0	_	1	0	0	1	_	0
000	3 5	0	0	0	-	-	-	-	0	0	0	-	1	1	0	0	0	-	1	1	0	0	0	-	0	-	-	-	0	0	0	0	-	-	-	1	0	0	0	0	-
INPUT CODE	12	0	0	0	0	0	0	0	1	1	-	-	1	1	0	0	0	0	0	0	-	-	-	-	-	-	-	-	0	0	0			0	0	0	1	1	1	-	-
,	Ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-	1	-	1	1	-	-	-	1	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0
	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	1	-	-	1	1	1	1	-
	z	128	129	130	132	133	134	135	137	138	139	140	142	143	144	145	147	148	149	150	152	153	154	157	155	156	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172
	fin (MHz)	1.28	1.29	1.30	1.32	1.33	1.34	1.35	1.37	1.38	1.39	1.40	1.42	1.43	1.44	1.45	1.47	1.48	1.49	1.50	1.52	1.53	1.54	1.57	1.55	1.56	1.58	1.59	1.60	1.61	1.62	1.63	1.64	1.65	1.66	1.67	1.68	1.69	1.70	1.71	1.72
	TX (USB) RX (USB) ±1.2 kHz		19.1775	19.1875	19.2075	19.2175	19.2275	19.2375	19.2575	19.2675	19.2775	19.2875	19.3075	19.3175	19.3275	19.3375	19.3575	19.3675	19.3775	19.3875	19.4075	19.4175	19.4275	19.4575	19.4375	19.4475	19.4675	19.4775	19.4875	19.4975	19.5075	19.5175	19.5275	19.5375	19.5475	19.5575	19.5675	19.5775	19.5875	19.5975	19.6075
VCO Frequency (MHz)	TX (LSB) RX (LSB) ±1.2 kHz		19.1725	19.1825	19.2025	19.2125	19.2225	19.2325	19.2525	19.2625	19.2725	19.2825	19.3025	19.3125	19.3225	19.3325	19.3525	19.3625	19.3725	19.3825	19.4025	19.4125	19.4225	19.4525	19.4325	19.4425	19.4625	19.4725	19.4825	19.4925	19.5025	19.5125	19.5225	19.5325	19.5425	19.5525	19.5625	19.5725	19.5825	19.5925	19.6025
	TX (AM) RX (AM) ±1.2 kHz	19.165	19.175	19.185	19.205	19.215	19.225	19.235	19.255	19.265	19.275	19.285	19.305	19.315	19.325	19.335	19.355	19.365	19.375	19.385	19.405	19.415	19.425	19.455	19.435	19.445	19.465	19.475	19.485	19.495	19.505	19.515	19.525	19.535	19.545	19.555	19.565	19.575	19.585	19.595	19.605
	Frequency (MHz)	26.965	26.975	26.985	27.005	27.015	27.025	27.035	27.055	27.065	27.075	27.085	27.105	27.115	27.125	27.135	27.155	27.165	27.175	27.185	27.205	27.215	27.225	27.255	27.235	27.245	27.265	27.275	27.285	27.295	27.305	27.315	27.325	27.335	27.345	27.355	27.365	27.375	27.385	27.395	27.405
	ნ	-	2	8	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

PLL OPERATION CHECK (TRANSMIT MODE)

Connect the Frequency counter to TP-3, and 50 $\!\Omega$ Dummy Load to ANT Jack J502. Refer to Figure 11.

POWER Switch : ON (Turn clockwise)
CB Switch : ON (PA Switch : Press out)

Channel : CH-19 Push-to-talk switch : PUSH

Check frequency in each mode: AM, USB, and LSB.

Frequencies are : 17.8850 MHz \pm 100 Hz in AM, 17.8875 MHz \pm 100 Hz in USB, and 17.8825 MHz \pm 100 Hz in LSB.

Readjust VR-1 and/or VR-2 and/or L2. Check D1, D2, Q3, Q4 and/or associated circuit components.

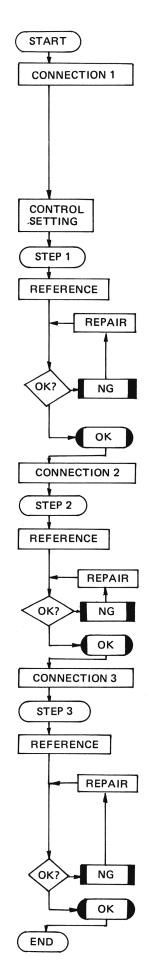
Wrong frequencies appear or no signal appears.

Frequencies are OK.

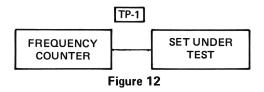
Connect the Frequency counter to TP-4.

Check frequency in each mode: AM, USB, and LSB.

Frequencies are : 19.385 MHz \pm 100 Hz in AM, 19.3875 MHz \pm 100 Hz in USB, and 19.3825 MHz \pm 100 Hz in LSB.


Check IC-1, IC-2 and/or associated circuit components.

Check the Channel Scanning System (IC-302) and/or associated circuit components.


Wrong frequencies appear or no signal appears.

Frequencies are OK.

PLL OPERATION CHECK (RECEIVE MODE)

Connect the Frequency counter to TP-1. Refer to Figure 12.

POWER Switch: ON (Turn clockwise)

Channel: CH-19 CLARIFIER: Center

Check frequency

Frequency is 10.240 MHz ± 100 Hz.

Adjust TC-1 until the frequency is 10.240 MHz \pm 100 Hz. Check IC-1 and/or associated circuit components.

Frequency is not 10.240 MHz ± 100 Hz or no signal appears.

Frequency is OK.

Connect the Frequency counter to TP-3.

Check frequency in each mode: AM, USB and LSB.

Frequencies are : 17.8850 MHz \pm 1.2 kHz in AM, 17.8875 MHz \pm 1.2 kHz in USB, and 17.8825 MHz \pm 1.2 kHz in LSB.

Check IC-3 and/or associated circuit components.

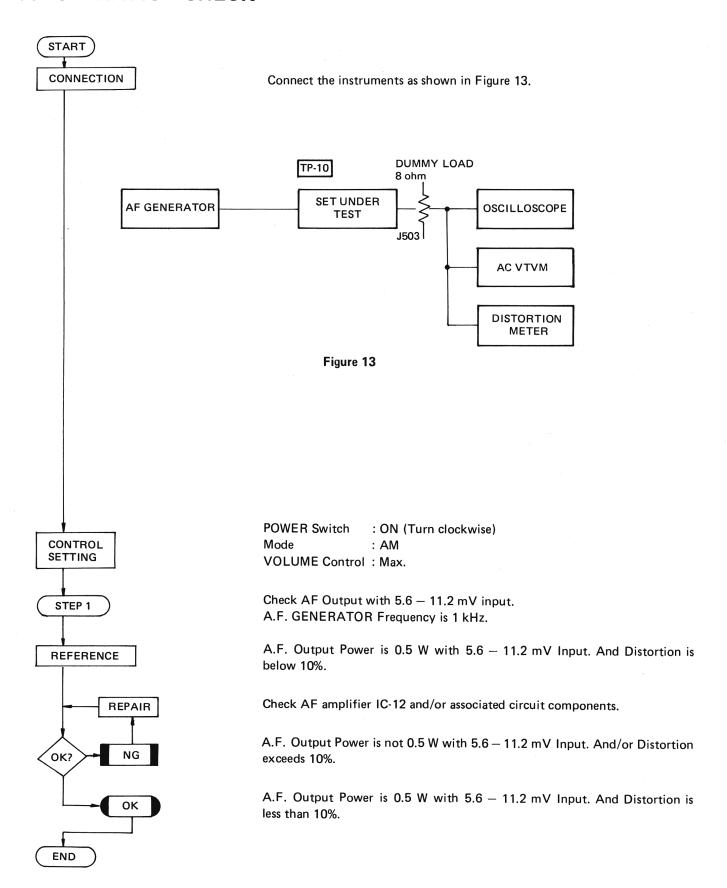
Wrong frequencies appear or no signal appears.

Frequencies are OK.

Connect the Frequency counter to TP-4.

Check frequency in each mode : AM, USB, and LSB.

Frequencies are : 19.385 MHz \pm 1.2 kHz in AM, 19.3875 MHz \pm 1.2 kHz in USB, and 19.3825 MHz \pm 1.2 kHz in LSB.

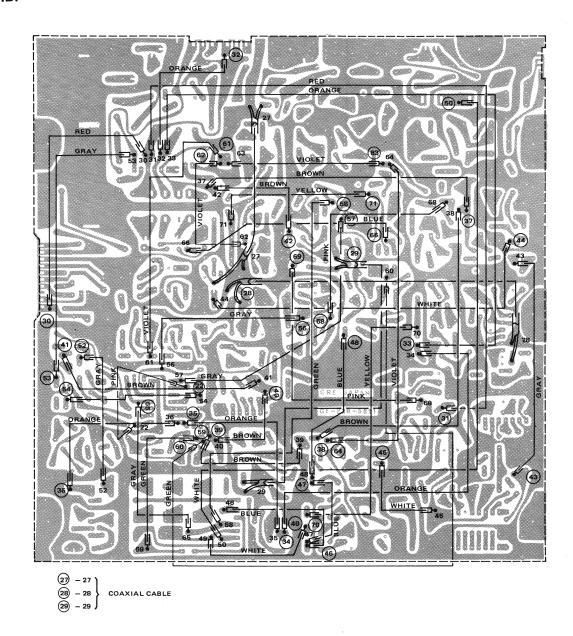

Check IC-1, IC-2 and/or associated circuit components. Check Input code of IC-1 (Pin 10-15). See page 18.

Check the Channel Scanning System and/or associated circuit components.

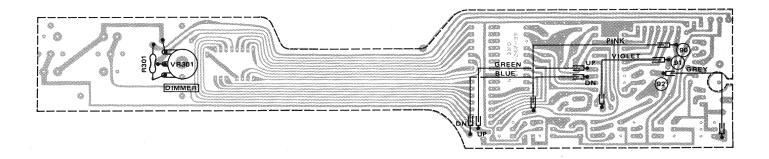
Wrong frequencies appear or no signal appears.

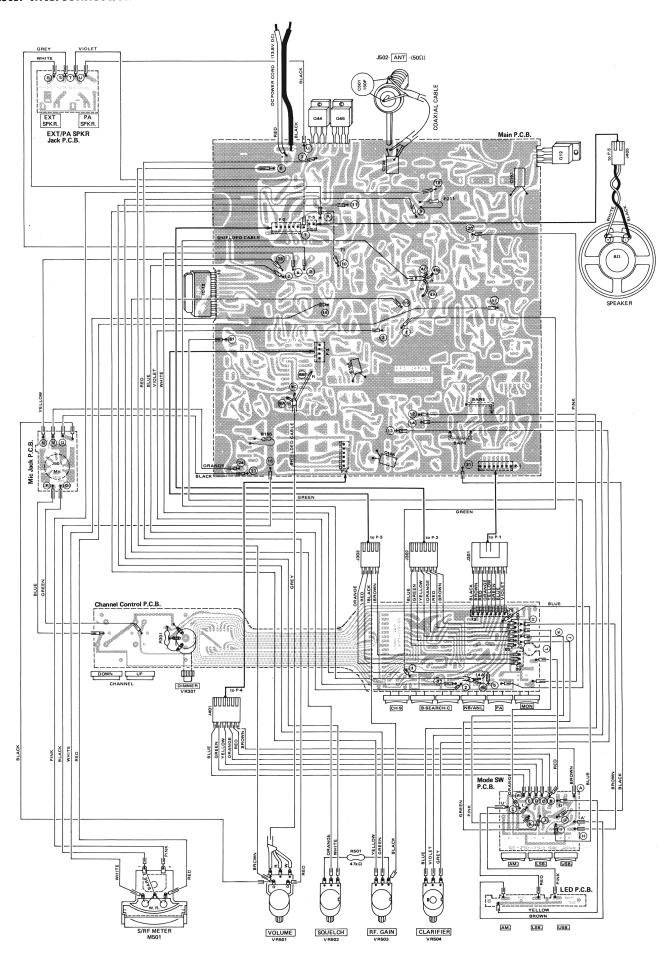
Frequencies are OK.

AF OPERATION CHECK

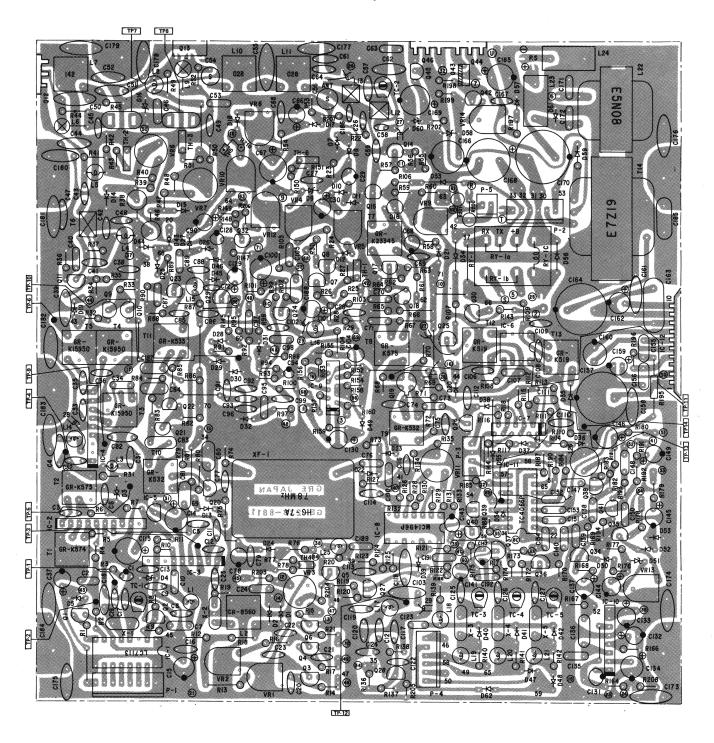

TROUBLESHOOTING GUIDE

	Symptom	Possible Cause
1)	Power failed, with Fuse not blown.	A) Faulty DC power cable. B) Defective power switch SW501, Q45, Q46, D60 and/or associated circuit components.
2)	Power failed and Fuse is blown.	A) Reverse polarity. B) D61 is broken and/or any short circuit to the GND.
3)	Does not receive both AM and SSB.	 A) Defective PLL circuit. Proceed to PLL OPERATION CHECK (RECEIVE MODE). B) Defective RF Stage amplifier Q17, Q18, Mixer Q19 and/or associated circuit components. C) Defective Q24 and/or associated circuit components.
4)	No sound TX SSB : OK	A) Defective AM amplifier. Proceed to AF OPERATION CHECK.
5)	No sound TX AM/SSB : OK	A) Defective speaker or EXT SPKR jack. B) Faulty Squelch control circuit. C) Defective Relay RY-1.
6)	Does not transmit both AM and SSB.	 A) Defective PLL circuit. Proceed to PLL OPERATION CHECK (TRANSMIT MODE). B) Defective Q11, Q12, Q13 and/or associated circuit components. C) Defective IC-8.
7)	Does not transmit on AM, TX SSB : OK	A) Defective Q42, Q43, Q44 and/or associated circuit components. B) AM/SSB switch Q27 is defective.
. 8)	Does not transmit on SSB, no modulation on AM.	A) Defective IC-10.
9)	Does not transmit on SSB, TX AM : OK	A) Defective Q36, Q37, D47 (LSB), D48 (USB) and/or associated circuit components. B) Defective AM/SSB switch Q27 (E-C: short)
10)	No modulation on AM, TX SSB : OK	A) Defective IC-11. B) Defective Q38, Q401, Q402 and/or associated circuit components.
11)	RX AGC does not function.	A) Defective Q23, Q29, Q30, Q32, D45, D46 and/or associated circuit components.
12)	Low sensitivity TX : OK	A) Defective AGC circuit (refer to 11). B) Defective Q20, Q21, Q22, Q23 and/or associated circuit components.

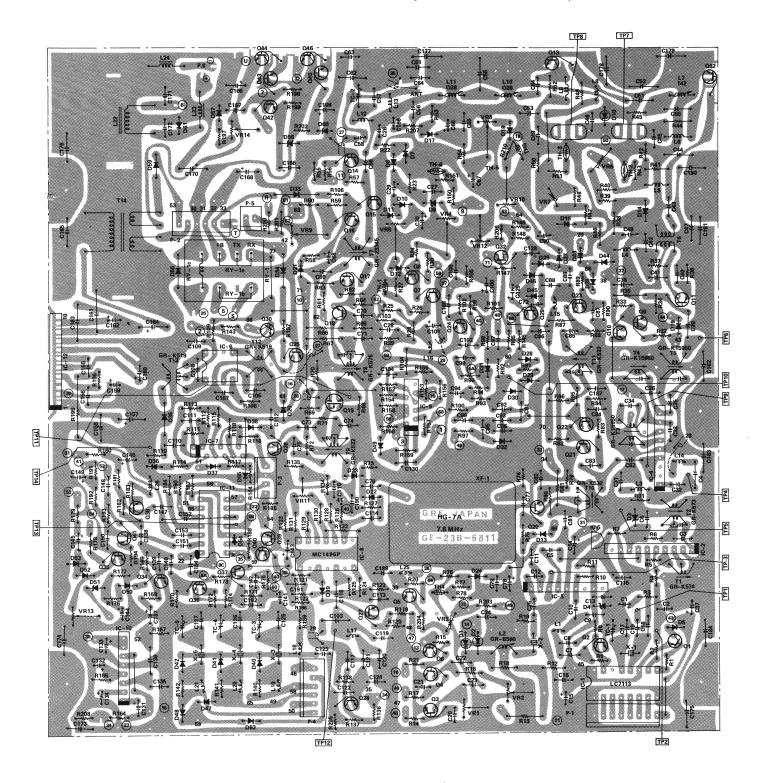

Symptom	Possible Cause
13) AMC does not function.	A) Defective Q34, Q35, D51, D52, D53 and/or associated circuit components.
14) NB/ANL does not function.	A) Defective Q25, Q26, IC-6, IC-7 and/or associated circuit components. B) Defective D31 and/or associated circuit components. C) Defective NB/ANL switch.
15) ALC does not function.	A) Defective D7, D8, D9, D10, D11, D12, Q7, Q8 and/or associated circuit components.
16) SQUELCH does not function.	A) Defective VR502. B) Defective IC-9 and/or associated circuit components.
17) RF GAIN control does not function.	A) Defective Q14 and/or associated circuit components.
18) Clarifier does not function.	A) Defective Q5, Q6, D1, D2 and/or associated circuit components.
19) PA does not function. CB: OK	A) Defective PA switch. B) Defective PA SPKR jack. C) Defective Q41, IC-11 and/or associated circuit components.


WIRING DIAGRAM

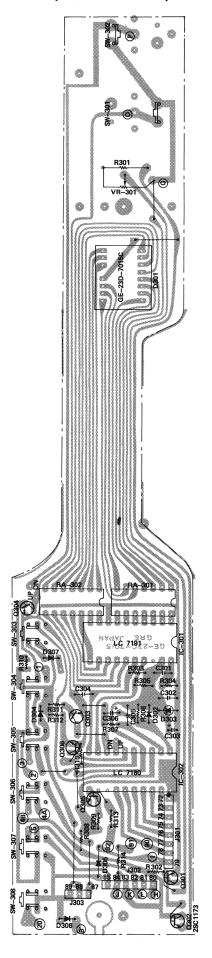
Main P.C.B.



Channel Control P.C.B.

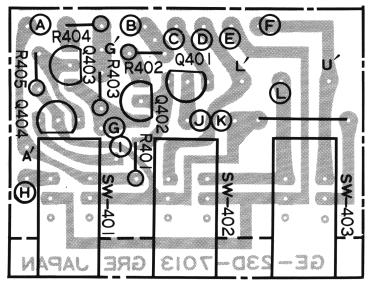


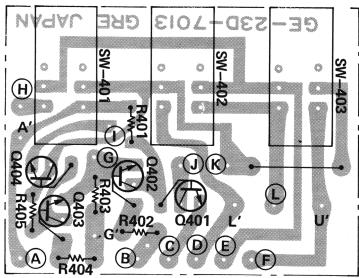
MAIN P.C. BOARD PARTS LOCATION (TOP VIEW)


MAIN P.C. BOARD PARTS LOCATION (BOTTOM VIEW)

CHANNEL CONTROL P.C. BOARD PARTS LOCATION

(TOP VIEW)

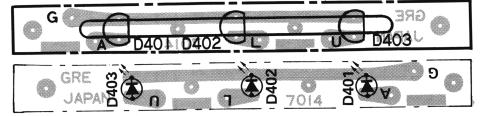

(BOTTOM VIEW)

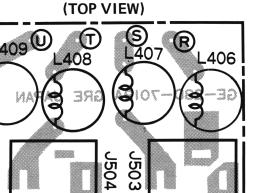


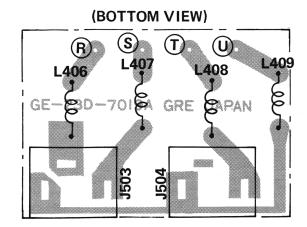
MODE SWITCH P.C. BOARD PARTS LOCATION

(TOP VIEW)

(BOTTOM VIEW)




LED P.C. BOARD PARTS LOCATION

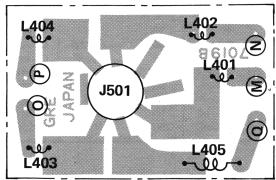

(TOP VIEW)

(BOTTOM VIEW)

PA/EXT SPKR JACK P.C. BOARD PARTS LOCATION

MIC JACK P.C. BOARD PARTS LOCATION

(TOP VIEW)


(TOP VIEW)

(TOP VIEW)

(TOP VIEW)

(TOP VIEW)

(BOTTOM VIEW)

ELECTRICAL PARTS LIST

CAPACITORS						
NOTE: Temperature characteristic						
	(C) NPO					
	(R) N220					
	(TH) N470					
	(U) N750					

	(U) N750			
Ref. No.	Value	Voltage (V)	Tolerance (%)	Material
C1	6.8µF	10	±20	Tantalum
C2	0.01μF	50	±10	Mylar
C3	0.01μF	50	–20, +80	Ceramic
C4	150pF	50	±10	Ceramic (C)
C5	33pF	50	±10	Ceramic (C)
C6	0.01μF	50	-20, +80	Ceramic
C7	0.01μF	50	±10	Mylar
C8	220pF	50	±10	Ceramic
C9	56pF	50	±10	Ceramic (C)
C10	0.01μF	50	±10	Mylar
C11	18pF	50	±10	Ceramic (C)
C12	27pF	50	±10	Ceramic (C)
C13	0.01μF	50	-20, +80	Ceramic
C14 C15	33μF	16 16	-10, +50	Electrolytic
C16	33μF 0.01μF	50	-10, +50 -20, +80	Electrolytic Ceramic
C17	0.01μF 10pF	50 50	±0.5pF	Ceramic (R)
C17	150pF	50	±10	Ceramic (R)
C19	5pF	50	±0.25pF	Ceramic (C)
C20	0.01μF	50	-20, +80	Ceramic (C)
C21	0.01µF	50	-20, +80	Ceramic
C22	10pF	50	±0.5pF	Ceramic (TH)
C23	4pF	50	±0.25pF	Ceramic (TH)
C24	0.01μF	50	±10	Mylar
C25	10pF	50	±0.5pF	Ceramic (U)
C26	4pF	50	±0.25pF	Ceramic (C)
C27	0.001µF	50	-20, +80	Ceramic
C28	0.01µF	50	-20, +80	Ceramic
C29	4.7μF	16	±20	Tantalum
C30	1μF	50	–10, +75	Electrolytic
C31	27pF	50	±10	Ceramic (C)
C32	15pF	50	±10	Ceramic (C)
C33	0.01μF	50	-20, +80	Ceramic
C34	0.01μF	50	±10	Mylar
C35	3pF	50^	±0.25pF	Ceramic (C)
C36	0.01μF	50	-20, +80	Ceramic
C37	1μF	50	-10, +75	Electrolytic
C38	0.01μF	50	-20, +80	Ceramic
C39	220pF	50	±10	Ceramic (C)
C40	0.001μF	50	±10	Mylar
C41 C42	68pF 0.01μF	50 50	±10 -20, +80	Ceramic (C) Ceramic
C42	0.01μF 0.01μF	50	-20, +80 -20, +80	Ceramic
C44	100pF	50	±10	Ceramic (C)
C45	0.01μF	50	-10, +80	Ceramic
C46	0.01μ1 0.022μF	50	±10	Mylar
C47	100pF	50	±10	Ceramic (C)
C48	0.01μF	50	-20, +80	Ceramic
C49	0.01μF	50	-20, +80	Ceramic
C50	68pF	50	±10	Ceramic (C)
C51	180pF	50	±10	Ceramic (C)
C52	100pF	50	±10	Ceramic (C)
C53	0.01µF	50	±10	Mylar
C54	330pF	250	±5	Polystyrene
	1, 1	L		

Ref. No.	Value	Voltage (V)	Tolerance (%)	Material
C55	470pF	500	±10	Ceramic
C56	150pF	250	±5	Polystyrene
C57	47pF	50	±10	Ceramic (C)
C58	5pF	50	±0.25pF	Ceramic (C)
C59	10pF	50	±0.5pF	Ceramic (C)
C60	Not used			
C61	100pF	50	±10	Ceramic (C)
C62	220pF	50 50	±10 ±10	Ceramic (C)
C63 C64	0.01μF 0.01μF	50 50		Mylar Ceramic
C65	0.01μF 0.01μF	50 50	-20, +80 -20, +80	Ceramic
C66	10μF	16	-10, +50	Electrolytic
C67	47μF	16	-10, +50	Electrolytic
C68	10μF	16	-10, +50	Electrolytic
C69	0.01μF	50	-20, +80	Ceramic
C70	0.022μF	50	±10	Mylar
C71	0.01μF	50	±10	Mylar
C72	5pF	50	±0.25pF	Ceramic (C)
C73	0.01µF	50	±10	Mylar
C74	0.01μF	50	-20, +80	Ceramic
C75	0.01µF	50	-20, +80	Ceramic
C76	0.01µF	50	±10	Mylar
C77	220pF	50	±10	Ceramic
C78 C79	10μF 0.01μF	16 50	-10, +50	Electrolytic Ceramic
C80	0.01μF 0.039μF	50 50	-20, +80 ±10	Mylar
C81	0.039µF	50	±10	Mylar
C82	68pF	50	±10	Ceramic (C)
C83	0.039µF	50	±10	Mylar
C84	0.039µF	50	±10	Mylar
C85	8pF	50	±0.5pF	Ceramic (C)
C86	0.01μF	50	-20, +80	Ceramic
C87	0.022μF	50	±10	Mylar
C88	47pF	50	±10	Ceramic (C)
C89	0.022μF	50	±10	Mylar
C90	1μF	50	-10, +75	Electrolytic
C91 C92	22pF 330pF	50 50	±10 ±10	Ceramic (C)
C92	10pF	50 50	±0.5pF	Ceramic (C)
C94	0.1μF	35	±20	Tantalum
C95	0.01µF	50	±10	Mylar
C96	47pF	50	±10	Ceramic (C)
C97	0.01µF	50	±10	Mylar
C98	0.022µF	50	±10	Mylar
C99	22pF	50	±10	Ceramic (C)
0400	47.5	40	40 .50	
C100	47μF	10	-10, +50 -10, +50	Electrolytic
C101 C102	10μF 150pF	16 50	±10	Electrolytic Ceramic
C102	150pF	50	±10	Ceramic
C104	4.7μF	16	±20	Tantalum
C105	0.0056μF	50	±10	Mylar
C106	0.01µF	50	-20, +80	Ceramic
C107	0.01μF	50	±10	Mylar
C108	10pF	50	±0.5pF	Ceramic (C)
C109	0.01μF	50	-20, +80	Ceramic
C110	220pF	50	±10	Ceramic
C111	0.01μF	50	±10	Mylar
C112	100pF	50	±10	Ceramic
C113	0.01μF	50	-20, +80	Ceramic
C114	0.01μF	50	-20, +80	Ceramic
C115	100μF	10	–10, +50	Electrolytic

C116	Ref. No.	Value	Voltage (V)	Tolerance (%)	Material
C118	C116	0.01µF	50	-20, +80	Ceramic
C119	C117	0.01μF	50	-20, +80	Ceramic
C120	C118	100pF	50		Ceramic (C)
C121					Ceramic (C)
C122		82pF			Ceramic (C)
C123					Ceramic (C)
C124					
C125 12pF 50 ±10 Ceramic (C) C126 12pF 50 ±10 Ceramic (C) C127 12pF 50 ±10 Ceramic (C) C128 2.2μF 16 ±20 Tantalum C130 10μF 16 -10, +50 Electrolytic C131 12μF 16 -10, +50 Electrolytic C133 10μF 16 -10, +50 Electrolytic C133 10μF 16 -10, +50 Electrolytic C133 0.01μF 50 ±10 Mylar C134 33μF 16 -10, +50 Electrolytic C135 0.01μF 50 ±10 Mylar C136 0.047μF 50 ±10 Mylar C137 1μF 50 ±10 Mylar C138 0.0033μF 50 ±10 Mylar C139 0.0056μF 50 ±10 Mylar C140 <td< td=""><td></td><td>,</td><td></td><td></td><td></td></td<>		,			
C126 12pF 50 ±10 Ceramic (C) C127 12pF 50 ±10 Ceramic (C) C128 2.2μF 16 ±20 Tantalum C129 10μF 16 −10, +50 Electrolytic C130 10μF 16 −10, +50 Electrolytic C131 22μF 6.3 ±20 Tantalum C132 10μF 16 −10, +50 Electrolytic C133 10μF 16 −10, +50 Electrolytic C133 33μF 16 −10, +50 Electrolytic C136 0.047μF 50 ±10 Mylar C136 0.047μF 50 ±10 Mylar C137 1μF 50 ±10 Mylar C138 0.003μF 50 ±10 Mylar C139 0.0056μF 50 ±10 Mylar C140 10μF 16 −10, +50 Electrolytic C143					
C127		•			
C128 2.2μF 16 ±20 Tantalum C129 10μF 16 -10, +50 Electrolytic C130 10μF 16 -10, +50 Electrolytic C131 22μF 6.3 ±20 Tantalum C132 10μF 16 -10, +50 Electrolytic C133 10μF 16 -10, +50 Electrolytic C134 33μF 16 -10, +50 Electrolytic C135 0.01μF 50 ±10 Mylar C136 0.047μF 50 ±10 Mylar C138 0.0033μF 50 ±10 Mylar C139 0.0056μF 50 ±10 Mylar C140 0.01μF 50 ±10 Mylar C141 10μF 16 -10, +50 Electrolytic C141 10μF 50 -10, +75 Electrolytic C142 10μF 50 -10, +75 Electrolytic <t< td=""><td></td><td></td><td>l</td><td></td><td></td></t<>			l		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
C130 10μF 16 -10, +50 Electrolytic Tantalum C131 22μF 6.3 ±20 Tantalum C132 10μF 16 -10, +50 Electrolytic C133 10μF 16 -10, +50 Electrolytic C134 33μF 16 -10, +50 Electrolytic C135 0.01μF 50 ±10 Mylar C136 0.047μF 50 ±10 Mylar C137 1μF 50 ±10 Mylar C138 0.0033μF 50 ±10 Mylar C139 0.0056μF 50 ±10 Mylar C140 0.01μF 50 ±10 Mylar C141 10μF 16 -10, +50 Electrolytic C141 10μF 50 ±10 Mylar C142 10μF 50 -10, +75 Electrolytic C143 1μF 50 -10, +75 Electrolytic C144 <td></td> <td></td> <td>l</td> <td></td> <td></td>			l		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
C132 $10\mu F$ 16 $-10, +50$ $Electrolytic$ C133 $10\mu F$ 16 $-10, +50$ $Electrolytic$ C134 $33\mu F$ 16 $-10, +50$ ± 10 $Mylar$ C135 $0.01\mu F$ 50 ± 10 $Mylar$ $Mylar$ C137 $1\mu F$ 50 ± 10 $Mylar$ C138 $0.0033\mu F$ 50 ± 10 $Mylar$ C139 $0.0056\mu F$ 50 ± 10 $Mylar$ C140 $0.01\mu F$ 50 ± 10 $Mylar$ C141 $10\mu F$ 16 $-10, +50$ $Electrolytic$ C142 $10\mu F$ 16 $-10, +50$ $Electrolytic$ C143 $1\mu F$ 50 $-10, +75$ $Electrolytic$ C144 $1\mu F$ 50 $-10, +75$ $Electrolytic$ C145 $1\mu F$ 50 $-10, +75$ $Electrolytic$ C146 $47\mu F$ 16 $-10, +50$ $Electrolytic$ C147 $0.022\mu F$ 50 ± 10 $Mylar$ C148 $0.056\mu F$ 50 ± 10 $Mylar$ C149 $10\mu F$ 16 $-10, +50$ $Electrolytic$ C150 $0.047\mu F$ 50 ± 10 $Mylar$ C151 $0.01\mu F$ 50 ± 10 $Mylar$ C152 $0.01\mu F$ 50 ± 10 $Mylar$ C155 $0.033\mu F$ 50 ± 10 $Mylar$ C156 $0.01\mu F$ 50 ± 10 $Mylar$ C157 $0.01\mu F$ 50 ± 10 $Mylar$ C158 $0.033\mu F$ 50 ± 10 $Mylar$ C159 $0.047\mu F$ 50 ± 10 $Mylar$ C166 $0.01\mu F$ 50 ± 10 $Mylar$ C167 $0.01\mu F$ 50 ± 10 $Mylar$ C168 $0.01\mu F$ 50 ± 10 $Mylar$ C169 $0.047\mu F$ 50 ± 10 $Mylar$ C160 $0.047\mu F$ 50 ± 10 $Mylar$ C161 $0.01\mu F$ 50 ± 10 $Mylar$ C162 $0.01\mu F$ 50 ± 10 $Mylar$ C155 $0.047\mu F$ 50 ± 10 $Mylar$ C165 $0.01\mu F$ 50 ± 10 $Mylar$ C166 $0.01\mu F$ 50 ± 10 $Mylar$ C167 $0.01\mu F$ 50 ± 10 $Mylar$ C168 $0.01\mu F$ 50 ± 10 $Mylar$ C169 $0.047\mu F$ 50 $0.047\mu F$ 60					·
C133		'	I		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			l		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		
C136 0.047μF 50 ±10 Mylar C137 1μF 50 —10, +75 Electrolytic C138 0.0033μF 50 ±10 Mylar C139 0.0056μF 50 ±10 Mylar C140 0.01μF 50 ±10 Mylar C141 10μF 16 —10, +50 Electrolytic C142 10μF 16 —10, +50 Electrolytic C143 1μF 50 —10, +75 Electrolytic C143 1μF 50 —10, +75 Electrolytic C143 1μF 50 —10, +75 Electrolytic C144 1μF 50 —10, +75 Electrolytic C144 1μF 50 —10, +75 Electrolytic C144 1μF 50 —10 Mylar C146 47μF 16 —10, +50 Electrolytic C147 0.022μF 50 ±10 Mylar					
C137 1μF 50 -10, +75 Electrolytic C138 0.003μF 50 ±10 Mylar C139 0.0056μF 50 ±10 Mylar C140 0.01μF 50 ±10 Mylar C140 10μF 16 -10, +50 Electrolytic C141 10μF 16 -10, +50 Electrolytic C142 10μF 50 -10, +75 Electrolytic C143 1μF 50 -10, +75 Electrolytic C144 1μF 50 -10, +75 Electrolytic C145 1μF 50 -10, +50 Electrolytic C146 47μF 16 -10, +50 Electrolytic C147 0.022μF 50 ±10 Mylar C148 0.056μF 50 ±10 Mylar C149 10μF 16 -10, +50 Electrolytic C150 0.01μF 50 ±10 Mylar			l		· .
C138 0.0033μF 50 ±10 Mylar C139 0.0056μF 50 ±10 Mylar C140 0.01μF 50 ±10 Mylar C141 10μF 16 -10, +50 Electrolytic C142 10μF 50 -10, +75 Electrolytic C143 1μF 50 -10, +75 Electrolytic C144 1μF 50 -10, +75 Electrolytic C145 1μF 50 -10, +75 Electrolytic C145 1μF 50 -10, +50 Electrolytic C146 47μF 16 -10, +50 Electrolytic C147 0.022μF 50 ±10 Mylar C148 10μF 16 -10, +50 Electrolytic C150 0.047μF 50 ±10 Mylar C151 0.01μF 50 ±10 Mylar C153 0.03μF 50 ±10 Mylar C154<			i		· ·
C140 0.01μF 50 ±10 Mylar C141 10μF 16 -10, +50 Electrolytic C142 10μF 16 -10, +50 Electrolytic C143 1μF 50 -10, +75 Electrolytic C144 1μF 50 -10, +75 Electrolytic C145 1μF 50 -10, +75 Electrolytic C146 47μF 16 -10, +50 Electrolytic C147 0.022μF 50 ±10 Mylar C148 0.056μF 50 ±10 Mylar C149 10μF 16 -10, +50 Electrolytic C150 0.047μF 50 ±10 Mylar C151 0.01μF 50 ±10 Mylar C152 0.01μF 50 ±10 Mylar C153 0.033μF 50 ±10 Mylar C154 0.01μF 50 ±10 Mylar C155	8		l		,
C141 $10\mu F$ 16 $-10, +50$ Electrolytic C142 $10\mu F$ 16 $-10, +50$ Electrolytic C143 $1\mu F$ 50 $-10, +75$ Electrolytic C144 $1\mu F$ 50 $-10, +75$ Electrolytic C145 $1\mu F$ 50 $-10, +75$ Electrolytic C146 $47\mu F$ 16 $-10, +50$ Electrolytic C146 $47\mu F$ 16 $-10, +50$ Electrolytic C147 $0.022\mu F$ 50 ± 10 Mylar C148 $0.056\mu F$ 50 ± 10 Mylar C148 $0.056\mu F$ 50 ± 10 Mylar C149 $10\mu F$ 10 10 Mylar C150 $0.047\mu F$ 50 ± 10 Mylar C151 $0.01\mu F$ 50 ± 10 Mylar C153 $0.033\mu F$ 50 ± 10 Mylar C154 $0.01\mu F$	C139	0.0056μF	50	±10	Mylar
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C140	0.01μF	50	±10	Mylar
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C141	10μF	16	–10, +50	Electrolytic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C142	10μF	16		Electrolytic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C143	1μF	50	–10, +75	Electrolytic
C146 $47\mu F$ 16 $-10, +50$ Electrolytic C147 $0.022\mu F$ 50 ± 10 Mylar C148 $0.056\mu F$ 50 ± 10 Mylar C149 $10\mu F$ 16 $-10, +50$ Electrolytic C150 $0.047\mu F$ 50 ± 10 Mylar C151 $0.01\mu F$ 50 ± 10 Mylar C152 $0.01\mu F$ 50 ± 10 Mylar C153 $0.033\mu F$ 50 ± 10 Mylar C154 $0.015\mu F$ 50 ± 10 Mylar C155 $0.047\mu F$ 50 ± 10 Mylar C156 $0.01\mu F$ 50 ± 10 Mylar C156 $0.01\mu F$ 50 ± 10 Mylar C157 $1000\mu F$ 16 $-10, +50$ Electrolytic C158 $100\mu F$ 50 ± 10 Ceramic (C) C159 $4.7\mu F$ 10 $-10, +50$	C144		50	–10, +75	Electrolytic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C145	1μF	50	–10, +75	Electrolytic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C146	47μF	16	-10, + 50	Electrolytic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	0.022µF	1		Mylar
C150 $0.047μF$ 50 ± 10 Mylar C151 $0.01μF$ 50 ± 10 Mylar C152 $0.01μF$ 50 ± 10 Mylar C153 $0.033μF$ 50 ± 10 Mylar C154 $0.015μF$ 50 ± 10 Mylar C155 $0.047μF$ 50 ± 10 Mylar C156 $0.01μF$ 50 ± 10 Mylar C156 $0.01μF$ 50 ± 10 Mylar C157 $1000μF$ 16 $-10, +50$ Electrolytic C158 $100pF$ 50 ± 10 Ceramic (C) C158 $100pF$ 50 ± 10 Ceramic (C) C159 $4.7μF$ 35 $-10, +50$ Electrolytic C160 $100μF$ 10 $-10, +50$ Electrolytic C161 $220pF$ 50 ± 10 Mylar C163 $470μF$ 16 $-10, +50$ Electr		· ·	İ		Mylar
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		l '			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i e	· ·		ı	1 '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	'	ł	1	1 '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1		l e	1 '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		i .	1	,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		, , ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	ı	· ·	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	l	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	i	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1				1 '
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	1 .	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	· '	ł		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C168		i	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	l		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C170	1000μF	16	-10, +50	Electrolytic
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C171	0.022µF	50	±10	Mylar
C174 0.22μF 50 ±10 Mylar C175 0.1μF 25 -20, +80 Ceramic C176 0.22μF 50 ±10 Mylar	C1.72	0.022µF	50	±10	Mylar
C175 $0.1\mu F$ 25 $-20, +80$ Ceramic C176 $0.22\mu F$ 50 ± 10 Mylar	C173	0.1μF	25	-20, +80	Ceramic
C176 0.22μF 50 ±10 Mylar	C174		50	l	Mylar
		0.1μF	25		Ceramic
C177 0.1μF 25 -20, +80 Ceramic			i	i e	Mylar
	C177	0.1μF	25	−20 , +80	Ceramic

Ref. No.	Value	Voltage (V)	Tolerance (%)	Material
C178	0.1μF	25	-20, +80	Ceramic
C179	0.1μF	25	-20, +80	Ceramic
C180	0.1μF	25	-20, +80	Ceramic
C181	0.1μF	25	-20, +80	Ceramic
C182	0.1μF	25	-20, +80	Ceramic
C183	0.1μF	25	-20, +80	Ceramic
C184	0.1μF	25	-20, +80	Ceramic
C185	0.1μF	50	±10	Mylar
C186	4pF	50	±0.25pF	Ceramic (C)
C187	0.039µF	50	±10	Mylar
C188	0.1μF	50	±10	Mylar
C189	0.022µF	50	±10	Mylar
C190	0.022µF	50	±10	Mylar
C191	0.022µF	50	±10	Mylar
C192	0.01μF	50	±10	Mylar
C193	0.01μF	50	±10	Mylar
C194	0.01μF	50	±10	Mylar
C195	0.01μF	50	±10	Mylar
C196	0.01μF	50	±10	Mylar
C301	0.068µF	50	±10	Mylar
C302	0.022µF	50	±10	Mylar
C303	33µF	16	-10, +50	Electrolytic
C304	33pF	50	±10	Ceramic (C)
C305	0.0068µF	50	±10	Mylar
C306	1μF	50	-10, +75	Electrolytic
C501	150pF	50	±10	Ceramic (C)

	COILS & TRANSFORMERS				
Ref. No.	Description	RS Part No.	MFR's Part No.		
L1	Inductor (100µH)	CB-2427	LF1-101K		
L2	OSC Coil	CA-4999	GR-B560		
L3	Inductor (0.68µH)	CB-2190	FL-3H-R68M		
L4	Inductor (270µH)	CB-2429	LF1-271K		
L5	Inductor (180µH)	CB-2428	LF1-181K		
L6	Choke Coil	CB-2195	4LNC-027		
L7	Choke Coil	CA-3931	10PND-142		
L8	Inductor (180µH)	CB-2428	LF1-181K		
L9	Choke Coil	CB-2195	4LNC-027		
L10, 11	Choke Coil	CA-7968	10PNP-028		
L12, 13	Choke Coil	CA-3488	4LNC-092		
L14	Inductor (3.3µH)	C-0984	LF1-3R3		
L15	Inductor (470µH)	C-0835	LF1-471K		
L16	Inductor (100µH)	CB-2427	LF1-101K		
L17	Inductor (10µH)	CB-2196	LF1-100K		
L18 – 21	Inductor (470µH)	C-0835	LF1-471K		
L22	Choke Transformer	CB-2364	E5N08		
L23, 24	Choke Coil	CB-2170	6LNC-053		
L25	Inductor (470µH)	C-0835	LF1-471K		
L26	Inductor (33mH)		8GCS-0041		
T1	VCO (19MHz)	CA-5001	GR-K574		
T2	VCO (19MHz)	CA-5000	GR-K573		
T3, 4, 5	BPF (27MHz)	CA-3885	GR-K15950		
Т6	TX (27MHz)	TA-0715	TR-2		
T7	RF (27MHz)	CA-3811	GR-K23345		
Т8	RF (27MHz)	CA-4998	GR-K575		
T9, 10	IF (7.8MHz)	CA-3809	GR-K532		
T11	IF (7.8MHz)	CA-3810	GR-K533		
T12, 13	NB	CA-3738	GR-K519		
T14	Modulation	TD-0184	E7Z19		
L401 — 404	Inductor (10µH)	CB-2196	LF1-100K		
L405 — 409	Choke Coil	CA-3182	3B-037		

	DIODES				
Ref. No.	Description	RS Part No.	Type No.		
D1, 2	Vari-cap	DX-1196	1S2789W		
D3, 4	Zener (6.2V)	DX-1194	05Z6.2L		
D5	Silicon	DX-0270	1S1555		
D6	Not used				
D7, 8	Silicon	DX-0270	1S1555		
D9	Zener (5.1V)	DX-1193	05Z5.1L		
D10 12	Germanium	DX-0161	1N60		
D13	Silicon	DX-0270	1S1555		
D14, 15	Silicon	DX-1131	S5277B		
D16	Zener (33V)	DX-1195	1Z33-A		
D17 – 21	Silicon	DX-0270	1S1555		
D22 - 24	Germanium	DX-0161	1N60		
D25	Silicon	DX-0270	1S1555		
D26, 27	Germanium	DX-0161	1N60		
D28	Silicon	DX-0270	1S1555		
D29 - 31	Germanium	DX-0161	1N60		
D32 - 34	Silicon	DX-0270	1S1555		
D35, 36	Germanium	DX-0161	1N60		
D37	Silicon	DX-0270	1S1555		
D38	Germanium	DX-0161	1N60		
D39 – 44	Silicon	DX-0270	1S1555		
D45, 46	Germanium	DX-0161	1N60		
D47, 48	Silicon	DX-0270	1S1555		
D49, 50	Silicon	DX-0270	1S1555		
D51	Zener (5.1V)	DX-1193	05Z5.1L		
D52, 53	Germanium	DX-0161	1N60		
D54, 55	Silicon	DX-0270	1S1555		
D56	Silicon	DX-1131	S5277B		
D57	Silicon	DX-0270	1S1555		
D58	Zener (4V)	DX-1228	HZ4C2		
D59	Silicon	DX-1229	3BZ61		
D60	Zener (10V)	DX-1034	05Z10L		
D61	Silicon	DX-1131	S5277B		
D62	Silicon	DX-0270	181555		
D301	LED	L-0880	SG-2-N52-02		
D302	Silicon	DX-0270	1S1555		
D303	Zener (6.2V)	DX-1194	05Z6.2L		
D304 – 307	Silicon	DX-0270	1S1555		
D401 — 403	LED	L-0983	TLR-124		

	CRYSTALS & CRYSTAL FILTERS						
Ref. No.	Ref. No. Description RS Part No. MFR's Part No.						
X1	Crystal	MX-2382	10.240MHz				
X2	Crystal	MX-2383	17.8875MHz				
Х3	Crystal	MX-2384	7.800MHz				
X4	Crystal	MX-2385	7.8025MHz				
X5	Crystal	MX-2386	7.7975MHz				
XF1	Filter (7.8MHz)	C-0964	HG-7A				

	INTEGRATED CIRCUITS					
Ref. No.	Type No.	Substitute Type No.				
IC1	LC7113					
IC2	KH3207					
IC3, 4	TA7310P					
IC5	TA78L009P					
IC6	SN76600P					
IC7	TA78 or TA58					
IC8	MC1496P	LM1496N				
IC9	TA78 or TA58					
IC10	μPC1170H					
IC11	TC4066P or BP	MC14066				
IC12	TA7222P or AP					
IC301	LC7191					
IC302	LC7180					

METER					
Ref. No. Description RS Part No. MFR's Part No.					
M501	S/RF Meter	M-0415	36E080		

RELAY						
Ref. No. Description RS Part No. MFR's Part No.						
RY1	Relay (TX-RX Switching)	R-8088	MX-2P-0			

-	THERMISTORS				
Ref. No. Description RS Part No. MFR's Part No.					
TH1 TH2, 3 TH4 TH5 TH6	Thermistor Thermistor Thermistor Thermistor Thermistor	T-1207 T-1138 T-1012 T-1210 T-1012	M-100 M-60 M-10K M-2K M-10K		

RESISTORS								
NOTE:	OTE: Unless otherwise specified all resistors are carbon film, wattage 1/4W, tolerance ±5%.							
Ref. No.	Value	RS Part No.	Watt- age (W)	Toler- ance (%)	Material			
R1	100kΩ	NEE-0371						
R2	10k Ω	NEE-0281						
R3	470Ω	NEE-0169						
R4	39kΩ	NEE-0330						
R5 R6	3.3kΩ 220Ω	NEE-0230 NEE-0149						
R7	150Ω	NEE-0142		,				
R8	16012 1kΩ	NEE-0196						
R9	82kΩ	NEE-0360						
R10	1 k Ω	NEE-0196						
R11	56Ω	NEE-0107						
R12	4.7 k Ω	NEE-0247						
R13	5.6kΩ	NEE-0257						
R14	10kΩ	NEE-0281						
R15 R16	10kΩ 2.2kΩ	NEE-0281 NEE-0216						
R17	2.2κ ₃ ε 10kΩ	NEE-0210						
R18	100kΩ	NEE-0371						
R19	$18k\Omega$	NEE-0303						
R20	10k Ω	NEE-0281						
R21	10kΩ	NEE-0281						
R22	1.2kΩ	NEE-0199						
R23	33k Ω	NEE-0324						
R24	33 k Ω	NEE-0324						
R25	5.6kΩ	NEE-0257						
R26	1.2kΩ	NEE-0199						
R27 R28	2.7kΩ 2.2kΩ	NEE-0224 NEE-0216						
R29	2.2kΩ	NEE-0216						
R30	10kΩ	NEE-0281						
R31	220Ω	NEE-0149						
R32	$33k\Omega$	NEE-0324						
R33	4.7 kΩ	NEE-0247						
R34	470 Ω	NEE-0169	-					
R35	2.7kΩ	NEE-0224						
R36	10Ω	NEE-0063						
R37	2.2kΩ	NEE-0216 NEH-0122	2	±5	Metal			
R38 R39	82Ω 2.2Ω	NEH-0122 NEE-0032	2		INICIAI			
R40	4.7Ω	NEE-0032						
R41	82Ω	NEE-0122	1					
R42	39Ω	NEE-0092						
R43	10Ω	NEE-0063						
R44	220Ω	NEE-0149						
R45	1kΩ	NEE-0196	_					
R46	82Ω	NEH-0122	2	±5	Metal			
R47	1Ω	NEE-0022						
R48 R49	2.2Ω 39Ω	NEE-0032 NEE-0092						
R50	39Ω	NEE-0092						
R51	10Ω	NEE-0092						
R52	1kΩ	NEE-0196						
R53	2.2kΩ	NEE-0216		1				
R54	560Ω	NEE-0176						
R55	3.3Ω	NEE-0230						
R56	10kΩ	NEE-0281	l	(1			
		1			<u> </u>			

Ref. No.	Value	RS Part No.	Watt- age (W)	Toler- ance (%)	Material	Ref. No.	Value	RS Part No.	Watt- age (W)	Toler- ance (%)	Material
R57	47Ω	NEE-0099				R118	10kΩ	NEE-0281			
R58	10k Ω	NEE-0281				R119	22 kΩ	NEE-0311			
R59	39 k Ω	NEE-0330				R120	10kΩ	NEE-0281			
R60	12k Ω	NEE-0288				R121	1kΩ	NEE-0196		*	·
R61	4.7kΩ	NEE-0247				R122	1.2kΩ	NEE-0199			
R62	56Ω	NEE-0107				R123	3.3kΩ	NEE-0230		4.	
R63 R64	820Ω 1kΩ	NEE-0187 NEE-0196				R124 R125	56Ω 56Ω	NEE-0107 NEE-0107			
R65	5.6kΩ	NEE-0190				R125	680Ω	NEE-0107	·		
R66	4.7kΩ	NEE-0247			-	R127	1kΩ	NEE-0196			
R67	100 Ω	NEE-0132				R128	8.2kΩ	NEE-0271			
R68	$47k\Omega$	NEE-0340				R129	1kΩ	NEE-0196			
R69	220k Ω	NEE-0396				R130	560Ω	NEE-0176			
R70	18kΩ	NEE-0303				R131	560Ω	NEE-0176			
R71	220Ω	NEE-0149				R132	1kΩ	NEE-0196			
R72	220Ω	NEE-0149				R133	1kΩ	NEE-0196			
R73 R74	220Ω	NEE-0149 NEE-0159				R134 R135	470Ω 470Ω	NEE-0169 NEE-0169			
R75	330Ω	NEE-0159				R136	2.2kΩ	NEE-0169 NEE-0216			
R76	35032 15kΩ	NEE-0297				R137	39kΩ	NEE-0210	-		
R77	22kΩ	NEE-0311				R138	2.2kΩ	E-0216			
R78	10kΩ	NEE-0281			•	R139	1kΩ	NEE-0196			
R79	56Ω	NEE-0107				R140	47kΩ	NEE-0340			
R80	4.7k Ω	NEE-0247				R141	47kΩ	NEE-0340			
R81	100 Ω	NEE-0132				R142	47kΩ	NEE-0340	-		
R82	3.3kΩ	NEE-0230				R143	10kΩ	NEE-0281			
R83	47kΩ	NEE-0340			·	R144	390kΩ	NEE-0414		,	
R84	150 Ω	NEE-0142	1			R145 R146	4.7kΩ	NEE-0247			
R85 R86	220Ω	NEE-0132 NEE-0149				R147	Not used 220kΩ	NEE-0396			
R87	27kΩ	NEE-0316				R148	47kΩ	NEE-0340			
R88	10k Ω	NEE-0281				R149	4.7kΩ	NEE-0247			
R89	820Ω	NEE-0187				R150	12kΩ	NEE-0288			
R90	470Ω	NEE-0169				R151	6. 8kΩ	NEE-0262			
R91	5.6kΩ	NEE-0257				R152	2.7kΩ	NEE-0224		-	
R92	100kΩ	NEE-0371				R153	1.5ΜΩ	NEE-0450	-		
R93 R94	820kΩ 220kΩ	NEE-0440 NEE-0396				R154	6.8kΩ	NEE-0262			
R95	680kΩ	NEE-0396				R155 R156	2.2kΩ 15kΩ	NEE-0216 NEE-0297			
R96	39kΩ	NEE-0330				R157	10kΩ	NEE-0297			
R97	33 k Ω	NEE-0324				R158	3.3kΩ	NEE-0230			
R98	56 kΩ	NEE-0345				R159	33kΩ	NEE-0324			-
R99	68 k Ω	NEE-0354				R160	10kΩ	NEE-0281			
						R161	Not used				
R100	10kΩ	NEE-0281				R162	Not used				
R101 R102	1kΩ 10kΩ	NEE-0196 NEE-0281				R163	Not used	NEE 0004			
R102	10κ3 <i>2</i>	NEE-0281 NEE-0196				R164 R165	10kΩ 2.2kΩ	NEE-0281 NEE-0216			
R103	2.2kΩ	NEE-0196				R166	2.2κι2 100kΩ	NEE-0216 NEE-0371			
R105	68kΩ	NEE-0354				R167	4.7kΩ	NEE-0247			
R106	$2.7k\Omega$	NEE-0224				R168	4.7kΩ	NEE-0247			
R107	$2.7 k\Omega$	NEE-0224	1			R169	4.7kΩ	NEE-0247			
R108	2.2kΩ	NEE-0216				R170	270kΩ	NEE-0402			
R109	56Ω	NEE-0107				R171	10kΩ	NEE-0281			
R110	330kΩ	NEE-0410				R172	390Ω	NEE-0162			
R111 R112	1.5M Ω 10k Ω	NEE-0450 NEE-0281				R173 R174	1MΩ 1kΩ	NEE-0445			
R112	180kΩ	NEE-0281 NEE-0387				R174	100Ω	NEE-0196 NEE-0132			
R114	6.8kΩ	NEE-0262				R176	680Ω	NEE-0132			
R115	68kΩ	NEE-0354				R177	56kΩ	NEE-0345			
R116	$2.2k\Omega$	NEE-0216	-			R178	4.7kΩ	NEE-0247			
R117	22 kΩ	NEE-0311	I	1	i	R179	680Ω	NEE-0183	l	l	1

Ref. No.	Value	RS Part No.	Watt- age (W)	Toler- ance (%)	Material
R180	120Ω	NEE-0136			
R181	330Ω	NEE-0159			
R182	1ΜΩ	NEE-0445			
R183	22Ω	NEE-0078			
R184	10kΩ	NEE-0281			
R185	10kΩ	NEE-0281			
R186	10kΩ	NEE-0281			
R187	220kΩ	NEE-0396			
R188	10kΩ	NEE-0281			
R189	Not used				
R190	10kΩ	NEE-0281			
R191	220Ω	NEE-0149			
R192	4.7kΩ	NEE-0247			
R193	- 1ΜΩ	NEE-0445			
R194	220Ω	NEE-0149			
R195	2.2k Ω	NEE-0216			
R196	2.2kΩ	NEE-0216			
R197	560Ω	NEE-0176			
R198	330Ω	NEE-0159			
R199	820Ω	NEE-0187			
R200	2.2Ω	NEG-0032	1	±5	Metal
R201	22Ω	NEG-0078	1	±5	Metal
R202	220Ω	NEE-0149			
R203	15kΩ	NEE-0297			
R204	5.6k Ω	NEE-0257	_		
R205	27 kΩ	NEE-0316			
R206	4.7 k Ω	NEE-0247			
R207	560Ω	NEE-0176			
R208	1kΩ	NEE-0196			
R209	Not used				
R210	3.3 k Ω	NEE-0230			
R211	4.7kΩ	NEE-0247			
R301	8.2kΩ	NEE-0271			
R302	1k Ω	NEE-0196			
R303	10kΩ	NEE-0281			
R304	68 k Ω	NEE-0354			
R305	10kΩ	NEE-0281			
R306	100kΩ	NEE-0371			
R307	470kΩ	NEE-0423	3		
R308	220Ω	NEE-0149			
R309	33 kΩ	NEE-0324			
R310	10kΩ	NEE-0281			
R311	10kΩ	NEE-0281			
R312	10kΩ	NEE-0281			
R313	10kΩ	NEE-0281			
R314	10kΩ	NEE-0281			
R315	47kΩ	NEE-0340			
R401	10kΩ	NEE-0281			
R402	10kΩ	NEE-0281			
R403	1kΩ	NEE-0196			
R404	10kΩ	NEE-0281		.	
R405	330Ω	NEE-0159			
R501	47kΩ	NEE-0340			

RESISTOR ARRAYS							
Ref. No.	Description	RS Part No.	MFR's Part No.				
RA301 RA302	560Ω x 7 560Ω x 7	RX-0109 RX-0109	EXB-RB7-561M EXB-RB7-561M				

*	SWITCHES								
Ref. No.	Description	RS Part No.	MFR's Part No.						
SW301 SW302	UP DOWN	S-9101 S-9101	AKC8S AKC8S						
	Function SW Ass'y	S-7408	6B-005D-C2060						
SW303 SW304 SW305 SW306 SW307 SW308	CH9 BC CC NB/ANL PA MON								
SW401 SW402 SW403	Mode SW Ass'y AM LSB USB	S-7409	3BB-0001- DF2060						

	TRANSISTORS					
Ref. No.	Type No.	Substitute Type No.				
Q1	2SA1015 (Y)	2SA495 (Y)				
Q2	2SC1815 (GR)	2SC373				
Q3, 4	2SC1923 (O)	2SC784 (O)				
Q5 — 9	2SC1815 (GR)	2SC373				
Q10	2SC735 (O) or (Y)					
Q11	2SC2086					
Q12	2SC2393					
Q13	2SC2394					
Q14, 15	2SC1923 (O)	2SC784 (O)				
Q16	2SC1815 (GR)	2SC373				
Q17	2SC1923 (O)	2SC784 (O)				
Q18	2SC1815 (GR)	2SC373				
Q19	3SK59 (GR)					
Q20 — 23	2SC1815 (Y)	2SC372 (Y)				
Q24	2\$C732 (GR)	,				
Q25, 26	2SC1923 (O)	2SC784 (O)				
Q27	2\$C1815 (GR)	2SC373				
Q28	2SC1815 (Y)	2SC372 (Y)				
Q29, 30	2SC1815 (GR)	2SC373				
Q31	Not used					
Q32	2SK19 (GR)					
Q33	Not used					
Q34 — 38	2SC1815 (GR)	2SC373				
Q39, 40	2SA1015 (Y)	2SA495 (Y)				
Q41, 42	2SC1815 (GR)	2SC373				
Q43	2SC509 (O) or (Y)					
Q44	2SD525 (O) or (Y)					
Q45	2SC1815 (GR)	2SC373				
Q46	2SD234 (O) or (Y)					
Q301	2SC1815 (GR)	2SC373				
Q302	2SC1173 (O)					
Q303 — 306	2SC1815 (GR)	2SC373				
Q401 — 404	2SC1815 (GR)	2SC373				

	VARIABLE RESISTORS							
Ref. No.	Description	RS Part No.	MFR's Part No.					
VR1	Semi-fixed 20kΩB	P-6530	EVN-K4AA-00-					
VR2	Semi-fixed 10kΩB	P-6531	B24 EVN-K4AA-00- B14					
VR3	Semi-fixed 10kΩB	P-6446	SR-19 10k					
VR4	Semi-fixed 5kΩB	P-6456	EVN-K4AA-00- B53					
VR5	Semi-fixed 50kΩB	P-6457	EVN-K4AA-00- B54					
VR6, 7	Semi-fixed 50ΩB	P-0836	TM10K (PV)- B50					
VR8	Semi-fixed 20kΩB	P-6530	EVN-K4AA-00- B24					
VR9	Semi-fixed 50kΩB	P-6457	EVN-K4AA-00- B54					
VR10	Semi-fixed 5kΩB	P-6456	EVN-K4AA-00- B53					
VR11	Semi-fixed 100ΩB	P-1351	SR-19R 100Ω					
VR12, 13	Semi-fixed 20kΩB	P-6530	EVN-K4AA-00- B24					
VR14	Semi-fixed 500ΩB	P-6455	EVN-K4AA-00- B52					
VR301	DIMMER Control 5kΩB	S-9102	V12M4-1 N20FHB 5k Ω					
VR501/ SW501	VOLUME Control 10kΩA with Power Switch	P-6538	VN21A024- 5N1111-10kA					
VR502	SQUELCH Control 50kΩC	P-6539	VN20A550- 50kC					
VR503	RF GAIN Control	P-6540	VN20A550- 50kB					
VR504	CLARIFIER Control 10kΩB	P-6541	VN20E505- 10kB					

VARIABLE CAPACITORS							
Ref. No.	Description	RS Part No.	MFR's Part No.				
TC1	Trimmer (20pF)	C-0965	ECV-1ZW- 20X53N				
TC2	Trimmer (25pF)	C-0966	ECV-1ZW- 25X53N				
TC3 — 5	Trimmer (20pF)	C-0965	ECV-1ZW- 20X53N				

	MISCELLANEOU	S	
Ref. No.	Description	RS Part No.	MFR's Part No.
P1	Connector (male : 8P)	J-6675	IL-8P-S3EN2
P2	Connector (male : 6P)	J-6676	IL-6P-S3EN2
P3	Connector (male: 4P)	J-6677	IL-4P-S3EN2
P4	Connector (male : 6P)	J-6676	IL-6P-S3EN2
P5	Connector (male : 2P)	J-6678	IL-2P-S3EN2
J301	8P Wire Connector Ass'y	J-6671	GE-23D-7473
J302	6P Wire Connector Ass'y	J-6674	GE-23D-7474
J303	4P Wire Connector Ass'y	J-6672	GE-23D-7475
J401	6P Wire Connector Ass'y	J-6674	GE-23D-7476
J405	2P Wire Connector Ass'y	J-6670	GE-23D-7477
J501	Mic Jack	J-6682	CS2270-01-101
J502	ANT Jack	J-6487	N-Y-R
J503, 504	EXT/PA SPKR Jack	J-0840	S-G8022
TP1 — 6	Test Pin		CHP-02A
TP7, 8	Crystal Socket for Test Point		S2-101P-01
TP9 — 14	Test Pin		CHP-02A

MECHANICAL PARTS LIST

Ref. No.	Description	RS Part No.	MFR's Part No.
(1)	Front Panel	Z-4591	GE-23B-7011
(2)	Control Knobs (VOL, SQ, RF GAIN, CLARI)	K-3327	GE-23D-7036
(3)	DIMMER Control Knob	K-3418	GE-23D-7037
(4)	Mode/Function SW Buttons (AM, LSB, USB, CH9, BC, CC, NB/ANL, PA, MON)	S-7410	GE-23D-7038
(5)	Channel Selection SW Button (UP)	K-3419	GE-23D-7039
(6)	Channel Selection SW Button (DOWN)	K-3420	GE-23D-7122
(7)	VOLUME Control with Power SW	P-6538	VN21A024-5N1111- 10kA
(8)	SQUELCH Control	P-6539	VN20A550-50kC
(9)	RF GAIN Control	P-6540	VN20A550-50kB
(10)	CLARIFIER Control	P-6541	VN20E505-10kB
(11)	Bracket for Controls	RT-2023	GE-23D-7040
(12)	Bracket for CH Control P.C. Board		GE-23D-7451
(13)	Meter (Signal strength/RF power)	M-0415	36E080
(14)	CH Control P.C. Board Ass'y	X-8045	GE-23E-7467
(15)	Mode SW P.C. Board Ass'y	X-8046	GE-23E-7468
(16)	LED P.C. Board Ass'y	X-8047	GE-23E-7469
(17)	Main Chassis		GE-23A-7030
(18)	Main P.C. Board Ass'y	X-8044	GE-23E-7466

Ref. No.	Description	RF Part No.	MFR's Part No.
(19)	Mic Jack P.C. Board Ass'y	X-8049	GE-23E-7470
(20)	PA/EXT SPKR Jack P.C. Board Ass'y	X-8048	GE-23E-7471
(21)	Mic Jack	J-6682	CS2270-01-101
(22)	ANT Jack	J-6487	N-Y-R
(23)	Speaker	S-4709	PD-960ST
(24)	Top Cover	Z-4592	GE-23B-7031
(25)	Bottom Cover	Z-4593	GE-23B-7032
(26)	Speaker Holder	HB-7385	GE-21D-6295
	DC Power Cord Ass'y		GE-23E-7482
'	DC Power Cord		GE-23D-7246
	Fuse		4A
	Fuse Label		4A
	Cord Strain Relief		3P-4
	Protection Cloth for Speaker		GE-23D-7452
	Protection Cloth for Cover (top/bottom)		GE-23D-7453
	Protection Fiber for CH Control P.C. Board		GE-23D-7450
	Protection Tape for CH Control P.C. Board		GE-23D-7590
	Model Label		GE-23D-7051
	Screws		
(27)	Round-Head Self Tapping Screws		3 x 6 mm
(28)	Binding-Head Self Tapping Screws		2.6 x 7 mm
(29)	Binding-Head Screws		3 x 6 mm
(30)	Binding-Head Screws		3.x 8 mm
(31)	Binding-Head Screws (black)		3 x 6 mm
(32)	Pan-Head Screws (nylon)		3 x 6 mm
(33)	Flat-Head Screws		2.6 x 6 mm
(34)	Flat-Head Screws		3 x 6 mm
(35)	Internal Star Lock Washers		16 <i>φ</i>
(36)	Internal Star Lock Washers		3 ¢
(37)	Hex Nuts		3 <i>φ</i>
(38)	Binding-Head Self Tapping Screws (black)		3.5 x 10 mm
	Post Pin (Assembled in Main P.C.B.)		MX-1.14T18

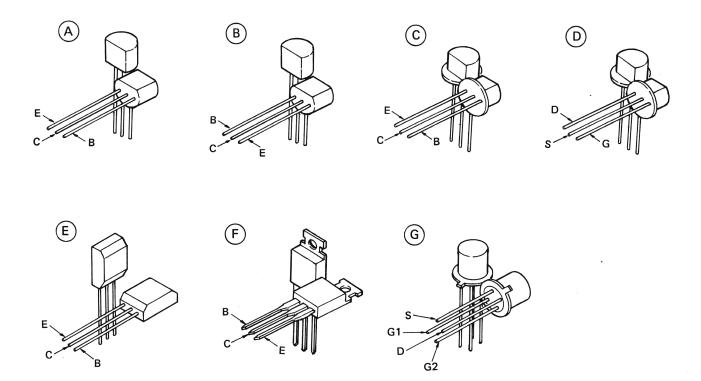
ACCESSORY LIST

Ref. No.	Description	RS Part No.	MFR's Part No.
(39) (40) (41)	Microphone with UP/DowN Key Mic Hanger with Mounting Screws Car Mounting Bracket Car Mounting Bracket Screws Protection Fiber for Car Mounting Bracket	M-2299 M-3119 MB-0189	M195D50G0310 UZ-0060 GE-21D-6153 GE-23D-7587 GE-23D-7673

SEMICONDUCTOR LEAD IDENTIFICATION

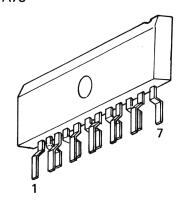
(1) TRANSISTOR

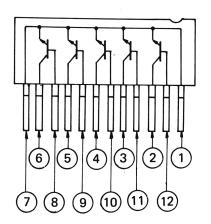
(A); 2SA1015(Y), 2SC1923(O), 2SC1815(Y), 2SC1815(GR)


(B); 2SC2086

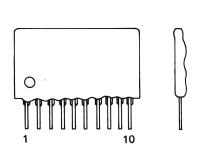
(C); 2SC735(O) or (Y), 2SC732(GR)

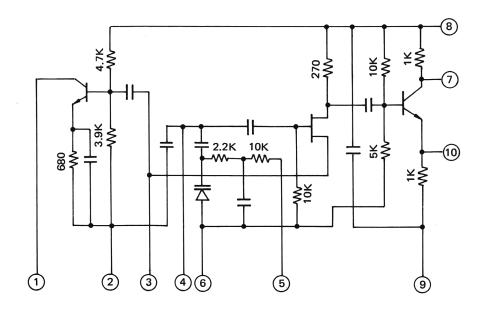
(D); 2SK19(GR) (E); 2SC509(O) or (Y)

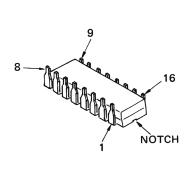

(F); 2SD525(O) or (Y), 2SC1173(O), 2SC2393, 2SC2394, 2SD234(O) or (Y)

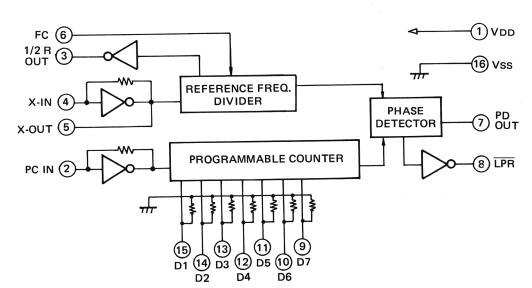

(G); 3SK59(GR)

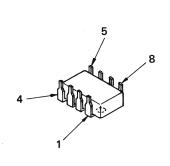
(2) IC/TRANSISTOR ARRAY

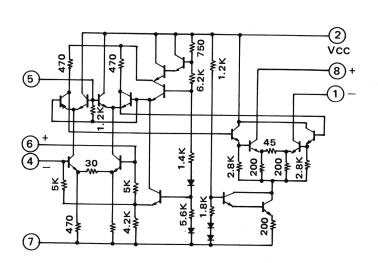

TA58/TA78

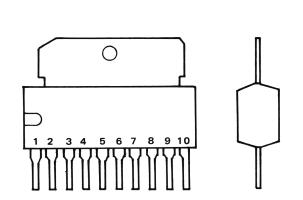


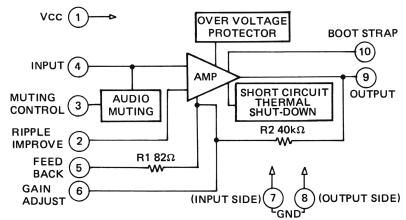

IC LEAD IDENTIFICATION AND EQUIVALENT CIRCUIT

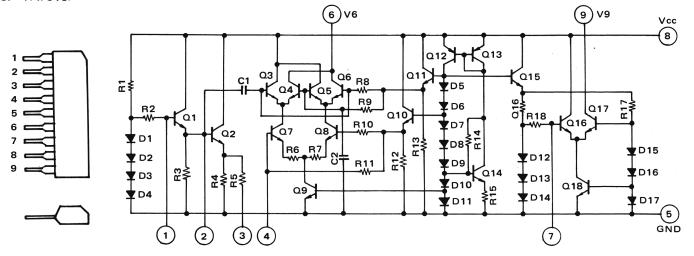

1. KH3207



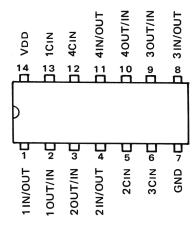

2. LC7113



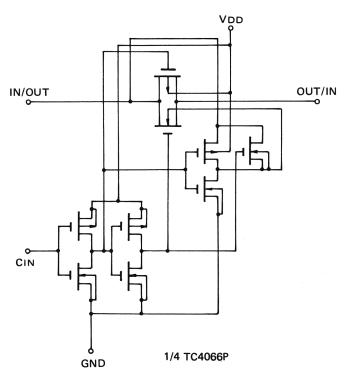

3. SN76600P



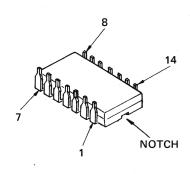
7. TA7222P

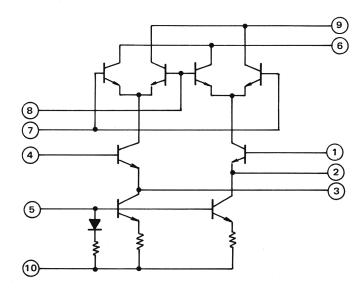


8. TA7310P

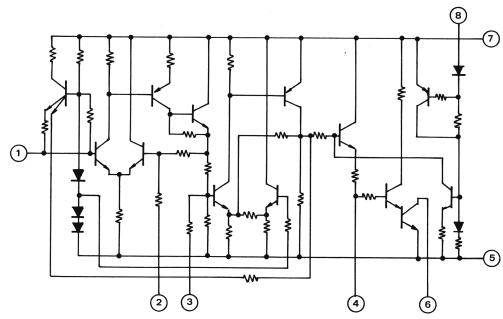


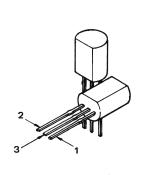
9. TC4066P

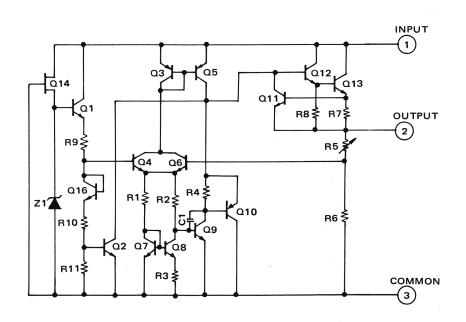


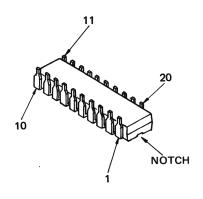

TRUTH TABLE

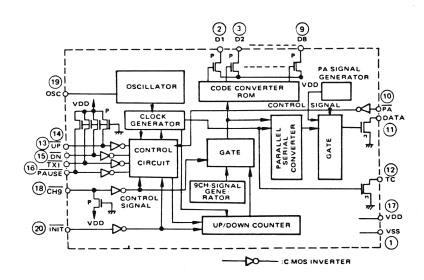
Cin	IN ·	OUT
Н	VDD ~ GND	Vin
L	VDD~GND	High Impedance

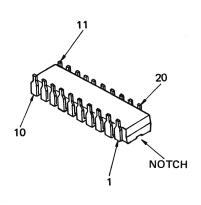

4. MC1496P

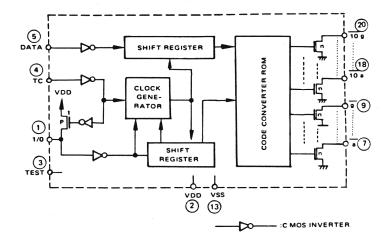



5. μPC1170H




6. TA78L009P




10. LC7180

11. LC7191

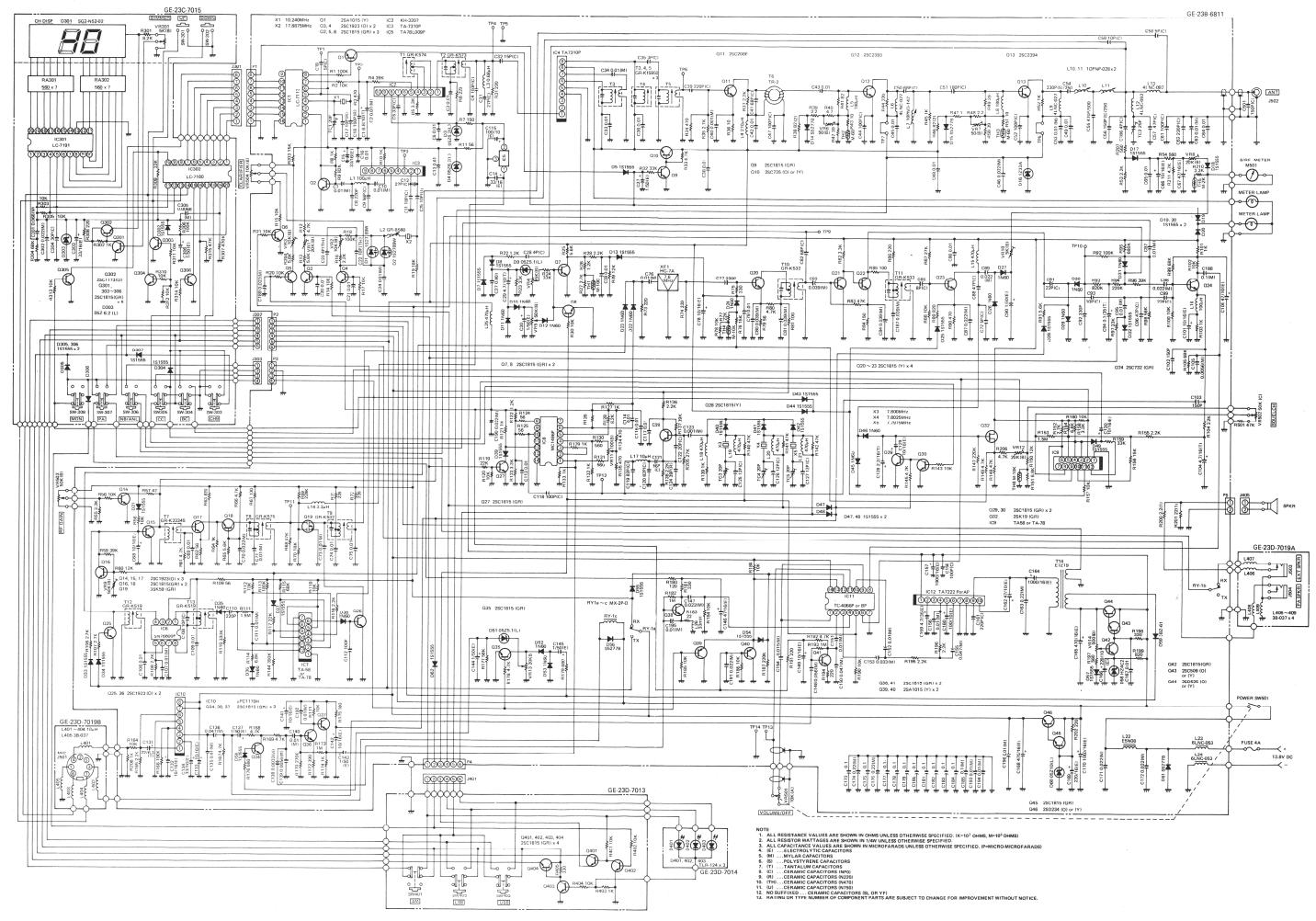
SEMICONDUCTOR VOLTAGE READINGS

			RECEIVING			TRANSMITTING	
REF.	NO.	POWER SUPPI	Y 13.8 V DC		POWER SUPP NO MODULA		
		AM	LSB	USB	AM	LSB	USB
Q1	ВС	6	6	6	6	6 0	6
Q2	В С	0.6 2.4	0.6 2.4	6 0.6 2.4	6 0.6 2.4	6 0.6 2.4	6 0.6 2.4
,	Е В	0 0.75	0	0	0.75	0	0
Q3	C E	0	3.7 0	6 0	0	3.7 0	6 0
Q4	B C E	0 4.7 0	0.75 0 0	0 6 0	0 4.7 0	0.75 0 0	0 6 0
Q5	B C E	0 3.4 0	0 3.4 0	0 3.4 0	0.68 0 0	0.68 0 0	0.68 0
Q6	B C E	0.68 0 0	0.68 0 0	0.68 0 0	0 2.4 0	0 2.4 0	0 2.4 0
Ω7	B C E	0 0 0	0 0 0	0 0 0	0 1.5 0	0 1.5 0	0 1.5 0
Ω8	B C E	0 0 0	0 0 0	0 0 0	0.7 0 0	0 0 0	0 0
Ω9	B C E	0 0 0	0 0 0	0 0 0	0 8 0	0 8 0	0 8 0
Q10	B C E	0 0 0	0 0 0	0 0	8 8.6 7.2	8 8.6 7.2	8 8.6 7.2
Q11	B C E	0 0	0 0 0	0 0 0	1.2 8.4 0.54	1.2 8.4 0.5	1.2 8.4 0.5
Q12	B C E	0 13.8 0	0 13.8 0	0 13.8 0	0.58 6 0	0.64 13.8 0	0.64 13.8 0
Q13	B C E	0 13.8 0	0 13.8 0	0 13.8 0	0.58 6 0	0.64 13.8 0	0.64 13.8 0
Q14	B C E	X 0 Z 0.74 X 0 Z 0.74 X 0 Z 0	× 0 z 0.74 × 0 × 0 × 0 × 0	X 0 Z 0.74 X 0 X 0	0 0 0	0 0 0	0 0 0

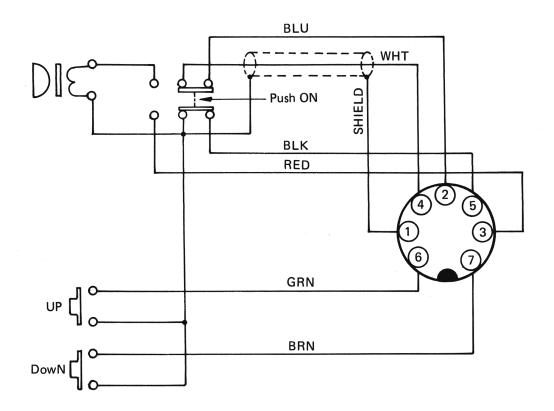
			RECEIVING	· .		TRANSMITTING	
REF. N	NO.	POWER SUPP	LY 13.8 V DC		POWER SUPP NO MODULA		
		AM	LSB	USB	AM	LSB	USB
Q15	B C E	S 0		AF IN O SO O SO O SO O O O O O O O O O O O O	0.78 0 0	0.78 0 0	0.78 0 0
Q16 _.	B	0.62 > 0.62	0.62	0.62 0.62	0.2	0.2	0.2
	C	0.1 0.55	0.1 2 0.55	0.1 0.55	0.79	0.79	0.79
	E	0 0 0 0	0.1 2 0.55	0.0 0.55	0	0	0
Q17	B C E	3. 1.3> 1.02 5.2 5.5 5.2 0.6 5 0.46	3. 1.3 2. 2. 5.2 1.02 2. 5.2 2. 5.2 0.46	3. 1.3 > 1.02 5.2 2.4 5.2 6.0.6 2.0 0.46	0 0 0	0 0 0	0 0 0
Q18	B C E	5.8 5.8 N	5.8> 5.8 8> 5.8 8> 5.8 5.2> 5.8 5.2> 5.8	2.8 S S S S S S S S S S S S S S S S S S S	0 0 0	0 0 0	0 0 0
Q19	G ₁	0	0	0	0	0 ·	0
	G ₂	0.58	0.58	0.58	0	0	0
	S	0	0	0	0	0	. 0
	D	7.6	7.6	7.6	0	0	0
Ω20	B	0.76 > 0.62	0.76> 0.62	0.76> 0.62	0.76	0.76	0.76
	C	2 8.4 2 6 8.4	2 8.4 2 6 8.4	2 8.4 2 8.4	8.4	8.4	8.4
	E	4 0.18 4 0.1	4 0.18 4 0.1	4 0.18 2 0.1	0.12	0.12	0.12
Q21	B	0.66	0.66	0.66	0	0	0
	C	2	2	2	0	0	0
	E	0	0	0	0	0	0
Q22	B	2	2	2	0	0	0
	C	6	6	6	0	0	0
	E	1.25	1.25	1.25	0	0	0
Q23	B	2.2	2.2	2.2	0	0	0
	C	8.6	8.6	8.6	0	0	0
	E	1.5	1.5	1.5	2.6	2.6	2.6
Q24	B	2.1	2.1	2.1	0	0	0
	C	3	3	3	0	0	0
	E	0.3	0.3	0.3	0	0	0
Q25	B	0	0	0	0.72	0.72	0.72
	C	0	0	0	0	0	0
	E	0	0	0	0	0	0
Q26	B	0	0	0	0	0	0
	C	0	0	0	0	0	0
	E	0	0	0	0	0	0
Q27	B	0	0	0	0.72	0	0
	C	0	0	0	0.1	7.4	7.4
	E	0	0	0	0	0	0
Ω28	B	3.6	3.6	3.6	3.6	3.6	3.6
	C	5.1	5.1	5.1	5.1	5.1	5.1
	E	3.4	3.4	3.4	3.4	3.4	3.4

					RECI	EIVING						Т	RANSI	MITTING			
REF. N	NO.	P	OWEF	R SUPPL		V DC						SUPPL ULAT		V DC			
			AM	1	L		USB			АМ		LSB			USB		
Q29	B C E		0 0 0			0.72 0 0		0.72 0 0			0 0 0		0 0 0			0 0 0	
Q30	B C E	0.0.0 0 0 0 0			C.C. Push in	0.7 0 0	C.C. Push in	0.7 0 0	,		_ _ _			_ _ _		- -	,
Q31	B C E	N	ot use	d													
Q32	G S D	N 2 8) > 2.4 = 6 3.7 = 6	-0.75 1.35 8.7	≥ 0 ≥ 2.4 ± 8.7	> -0.75 2 6 1.35 2 8.7	≥ 0 ≥ 2.4 ± 8.7	RF IN: 50mV	-0.75 1.35 8.7		0 0 0			0 0 0		0 0 0	
Q33	B C E	Not used															
Q34	B C E		0 0 0			0 0 0	-	0 0 0			0 0 0			0 0 0		0 0 0	
Q35	B C E	8 0) ≥	0.72 0 0	0 8 0 0	N 0.72 N 0 N 0 N 0	0 8 0 0	PA/MON	0.72 0 0	0 8 0 0)MO	0.72 0 0	0 8 0 0	V 0.72 V 0 V 0 V 0	0 8 0 0	PA/MON	0.72 0 0
Q36	B C E		0			0.6 4.4 0.1		0.6 4.4 0.1	ļ		0 0 0			0.6 4.4 0.1		0.6 4.4 0.1	l ,
Ω37	B C E		0 0			4.4 6.6 3.8		4.4 6.6 3.8	6		0 0 0			4.4 6.6 3.8		4.4 6.6 3.8	3
Q38	B C E		0 0 0		5.	0 0 0		0 0 0			0.63 4.5 0	3		0 0 0		0 0 0	
Q39	B C E	80 0 0	U	8.6 0 0.6	0 g 0 0.6	N 8.6 0 0 0.6	0 g 0 0.6	PA/MON	8.6	0 80 0.64	PA/MON	8.6 0 8.6	0 8 0 0.64	N 8.6 0 8.6	0 8 0 0.6	NOM/A9	8.6 0 8.6
Q40	B C E		0 0 0.			0 0 0.6		0 0 0.6	i		8.6 0 0.64	-		8.6 0 0.64		8.6 0 0.6	
Q41	B C E		0 0 0			0 0 0		0 0 0		A A	0.7 4.8 0.2		PA	0.7 4.8 0.2	PA	0.7 4.8 0.2	3
Q42	B C E		7.	.3 .4 .6		5.3 7.4 4.6		5.3 7.4 4.6	1		5.3 7.6 4.6			5.3 7.4 4.6		5.3 7.4 4.6	ŀ

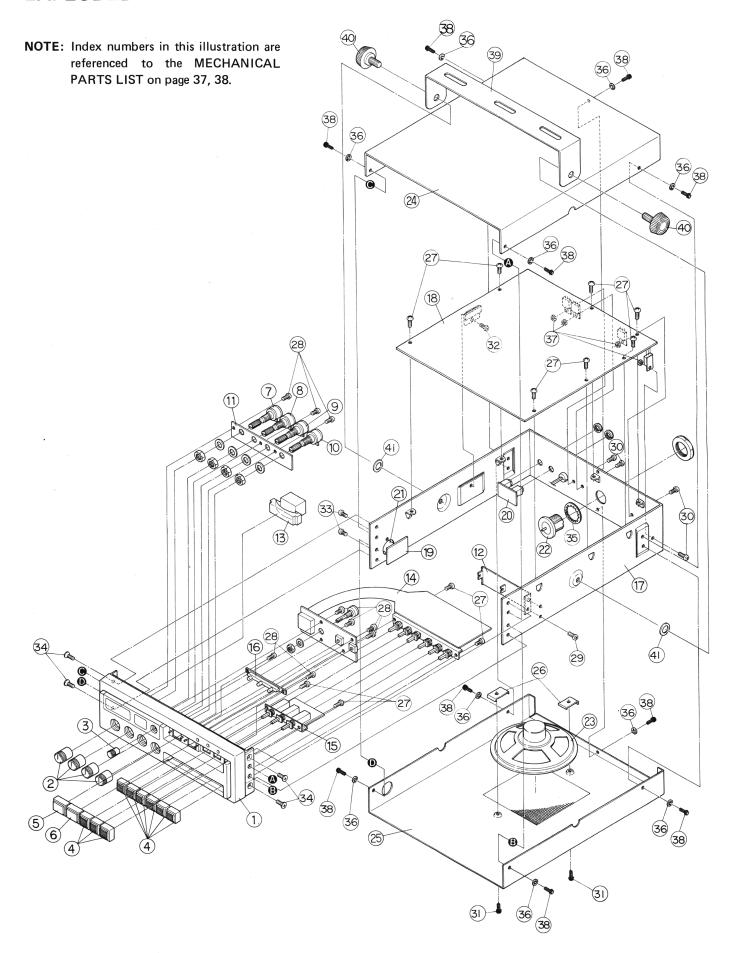
			RECEIVING		Т	RANSMITTING		
REF. N	О.	POWER SUPPL			POWER SUPPLY	ION		
			(VDC)	·		(VDC)		
		AM	LSB	USB	AM	LSB	USB	
	В	7.4	7.4	7.4	7.6	7.4	7.4	
Q43	С	13.8	13.8	13.8	13.8	13.8	13.8	
	E	6.8	6.8	6.8	7.0	6.8	6.8	
Q44	B C	6.8 13.8	6.8 13.8	6.8 13.8	7.0 13.8	6.8 13.8	6.8 13.8	
444	E	6.3	6.3	6.3	6.3	6.3	6.3	
	В	10.6	10.6	10.6	10.6	10.6	10.6	
Q45	C	13.8	13.8	13.8	13.8	13.8	13.8	
	E	10	10	10	10	10	10	
	В	10.6	10.6	10.6	10.6	10.6	10.6	
Q46	С	13.8	13.8	13.8	13.8	13.8	13.8	
	E	9.3	9.3	9.3	9.3	9.3	9.3	
Q301	B C	E 0	0.6 Will 9.2 Wild 0 0	0.6 WH 0 0.6 WH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.6 N. M.	9.2 WI 2 0 WI 0	0.6 W:: W:: 0.6 W:: W:: 2 0.6 W:: 0.6	
2301	B <u>c</u> 0		0 W 0	W 0 W 0	9.2 2 2	9.2 ¥ 2 2 ¥ 0	9.2 2 2	
	В							
Q302	C	9.2 × 2 9.3 × 9.3 9.3 × 1.7	9.2 × 2 W: 9.3 × 9.3 M 9.3 1.7	9.2 × 2 W: 9.3 W: 9.3 W: 8.6 I 1.7	9.2 × 2 9.3 × 9.3 9.3 × 9.3 1.7	9.2 × 2 W:9.3 × 9.3 08.6 0 1.7	9.2 × 2 W: 9.3 × 9.3 M 9.3 × 1.7	
	E	8.6 ≥ 1.7	8.6 2 1.7	8.6	8.6 2 1.7	9.3 9.3 8.6 5 1.7	9.2 × 2 W 9.3 × 9.3 M 8.6 M 1.7	
	В	0.6 7		0 7	•			
O303	C E	0]	B.C. : Push-in	6]	B.C. : Push			
	В	0.6 7		0 7		•		
Q304	С	0	C.C.: Push-in	6	C.C. : Push-out			
	E	0]		0]				
	В	0.6 7		0 7				
Q305	C E	0	PA: Push-in	6	PA : Push-	out		
		0 7		0 -				
Q306	B C	0	0 6	0 6	0.6 0	0.6	0.6	
4000	E	0	0	o	0	0	0	
	В	0.6	0	0	8.5	0	0	
Q401	С	0	0	0	9.3	9.3	9.3	
	E	0	0	0	8	0	0	
	В	0	0.6	0.6	0	0.6	0.6	
Q402	C E	0	0	0	8.5	0	0	
	 B	0.6 ¬	0	0	0	0	0	
Q403	С	0.6						
• •	Ē	0						
	В	0	Mode: AM or L	ode: AM or LSB or USB				
Q404	С	9.3						
	Е	0 —						


			RECEIVING		7	TRANSMITTING	
REF.	NO.	POWER SUPPL			POWER SUPPL NO MODULAT	ION	
			(VDC)		2	(VDC)	
		AM	LSB	USB	AM	LSB	USB
	1	6	6	6	6	6	6
	2	2.3	2.3	2.3	2.3	2.3	2.3
	3	_	- ,	_	_	_	_
	4	_	_	_	_	_	
	5	2.8	2.8	2.8	2.8	2.8	2.8
	6 7	6 2.1	6 2.1	6 2.1	6 2.1	6 2.1	6 2.1
	8	6	6	2. I 6	6	6	6
IC1	9	0	0	0	0	0	0
	г 10	,	· ·				Ü
_	11						
DATA	12						
70		6 or 0	6 or 0	6 or 0	6 or 0	6 or 0	6 or 0
	14						
	L ₁₅	_	•			•	
	16	0	0	0	0	0	0
	1	5.3	5.3	5.3	5.3	5.3	5.3
	2	0	0	0	0	0	0
	3 4	0	0 0	0 0	0	0 0	0 0
	5	2.1	2.1	2.1	2.1	2.1	2.1
IC2	6	0	0	0	0	0	0
	7	4.8	4.8	4.8	4.8	4.8	4.8
	8	6	6	6	6	6	6
	9	0	0	0	0	0	0
	10	1.7	1.7	1.7	1.7	1.7	1.7
	1	1.25	1.25	1.25	1.25	1.25	1.25
	2	6	6	6	6	6	6
	3	2	2	2	2	2	2
100	4	3.2	3.3	3.3	3.3	3.3	3.3
IC3	5 6	0 2.5	0 2.5	0 2.5	0 2.5	0 2.5	0 2.5
	7	2.5	2.5	2.5 2.4	2.5	2.5 2.4	2.5 2.4
	8	2.3	2.3	2.3	2.3	2.3	2.3
	9	2.4	2.4	2.4	2.4	2.4	2.4
	1	0	0	0	7.2	7.2	7.2
	2	0	0	0	7.2	7.2	7.2
	3	0	0	0	2.1	2.1	2.1
	4	0	0	0	7.2	7.2	7.2
IC4	5	0	0	. 0	0	0	0
	6	0	0	0	2.6	2.6	2.6
	7	0	0	0	1.5	1.5	1.5
	8	0	0	0	2.3	2.3	2.3
	9	0	0	0	2.6	2.6	2.6

			-	RECEI	VING			3 1 2	TRANSMITTING			
REF.	NO.	POWER SU	IPPL'					POWER SUPPLY 13.8 V DC NO MODULATION				
				(V D	OC)			(VDC)				
		AM		LSB		USB		AM	LSB	USB		
	1	13.8		13	3.8	13.8	3	13.8	13.8	13.8		
IC5	2	9			9	9		9	9	9		
	3	0		(0	0		0	0	0		
	1	8.1		8	3.1	8.	1	8.1	8.1	8.1		
	2	8.1		8	3.1	8.	1	8.1	8.1	8.1		
	3	0	-		0	0		0	0	0		
IC6	4	2.4			2.4	2.4		2.4	2.4	2.4		
100	5	2.4			2.4	2.4		2.4	2.4	2.4		
	6	2.4			2.4	2.4	1	2.4	2.4	2.4		
	7	0			0	0		0	0	0		
	8	8.1		3	B. 1	8.	1	8.1	8.1	8.1		
	1	0 0		0	0	. 0	0	0	0	0		
	2	5 5		5	5	5	5	0	0	0		
	3	0.7 0.	6	0.7	0.6	0.7	0.6	0	0	0		
	4	0 4 0		_ 0	0 0 0	_ 0 _ <u>u</u>	0	0	0	0		
	5	NB/ANL: ON 0 0 0 0 0 0 0 0 0 0 0 0		0 O		0 0 PF	0	0	0	0		
IC7	6	NB/ANL : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		 0 	0	NB/ANL:0	0	0	0	0		
	7	0 × 0		NA O	NB/ANL 0 0 0	NB/ANL 0 0 0 NB/ANL	0	0	0	0		
	8					20 2	0	0	0	0		
	9	1	65 0	0.65	0.65	0.65	0.65	0	0	0		
	10	0.7 0.		0.7	0.6	0.7	0.6	0	0	0		
	11 12	0.4 0. 0.56 0.	4 56	0.4 0.56	0.4 0.56	0.4 0.56	0.4 0.56	0	0 .	0		
			50			-	0.56					
	1 ,	0		I	0	0		1.7	2.1	2.1		
	2	0		1	0	0		0	1.4	1.4		
	3	0			0	0		1.0	1.4	1.4		
	4 5	0		1	0 0	0		1.7	2.05	2.05		
		0			-	0		1.2	1.4	1.4		
	6 7	0		4	0 0	0 0		2.1	7.7 0	7.7		
IC8	8	0		1	0	0		1.75	6.3	6.3		
	9	0		t	0	0		0	0.0	0.5		
	10	o			0	0		1.7	6.3	6.3		
	11	0		1	0	0		0	0	0		
	12	0		1	0	0		0.9	7.7	7.7		
	13	0		ı	0	0		0	0	0		
	14	0			0	0		0	0	0		


			RE	CEIVING			-	TRANSMITTING		
REF. N	NΟ	POWER SU	PLY 13	.8 V DC			POWER SUPPL			
	•0.		(V DC)			(VDC)			
		AM		LSB	U	SB	АМ	LSB	USB	
	1	0 0	0	0	0	0	0	0	0	
	2	0 0	0	0	0	0	0	0	0	
	3	0 8.6	- 1	8.6	0	8.6	0	0	0	
	4	0 8.6		8.6	0	8.6	0	0	0	
	5	z 5.6	z 5.	6 4 0	z 5.6	0 0.7	0	0	0	
IC9	6	1·· U ·· U.	1 ·· U	0.7	0 0 0 : 0	0.7	0	0	0	
	7	0 0 0 0	0 %	% o	1	ο ₀ ο	0	0	0	
	8	0.65 0	1	65 0	0.65	0	0	0	0	
	9	0 0.7	_	0.7	0	0.7	0	0	0	
	10 11			67 0	0.67	0	0	0	0	
	12	0 0	0	0 0	0	0 0	0	0	0 0	
	1	1.8		1.8		1.8	1.8	1.8	1.8	
	2 3	2.0 1.35		2.0 1.35		2.0 1.35	2.0 1.35	2.0 1.35	2.0	
	4	0		0		0	0	0	1.35 0	
IC10	5	0		0	1	0	0	0	0	
	6	0		0	1	0	0	0	0	
	7	8.6		8.6	1	8.6	8.6	8.6	8.6	
	8	8.6		8.6	1	8.6	8.6	8.6	8.6	
	1	0		0		0	0	0	· 0	
	2	0		0		0	0	0	0	
·	3	0		0	1	0	0	0	0	
	4	0		0	ı	0	0	0	0	
	5	0		0	ı	0	8.3	8.3	8.3	
	6	8.7		8.7	1	8.7	0	0	0	
IC11	7	0		0		0	0	0	0	
	8	0		0	1	0	0	0	0	
	9 10	0		0		0	0	0	0	
	11	0		0		0 0	0	0	0	
	12	9		9		9	- O H	Z 0 H	2 O H	
	13	0.6		0.6	1	0.6	PA:ON 2 6 0 900:0FF	0.0 PA 0.09	PA: ON PA: OFF	
	14	9.3		9.3		9.3	PA: OPF PA: OFF	9.3	PA: ON 8: OFF 9: OFF	
	1	13.8		13.8	1	3.8	13.8	13.8	13.8	
	2	2.8		2.8		2.8	2.8	2.8	2.8	
	3 4	0		0		0 0	0	0	0 0	
		0		0			0	0	0	
IC12	5	1.9		1.9		1.9	1.9	1.9	1.9	
	6 7	1.9		1.9 0		1.9	1.9	1.9	1.9	
	8	0		0		0 0	0	0 0	0	
	9	6.8		6.8		6.8	6.8	6.8	6.8	
	10	13		13		3	13	13	13	
					<u> </u>					

REF. NO.	RECEIVING			TRANSMITTING		
	POWER SUPPLY 13.8 V DC			POWER SUPPLY 13.8 V DC NO MODULATION (V DC)		
	AM	LSB	USB	AM	LSB	USB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	6 6 0 0 7.1 7.1 0 7.1 7.1 0 7.1 7.1 7.1 7.1 7.1 7.1 7.1	6 6 0 0 0 7.1 7.1 0 7.1 7.1 0 7.1 7.1 7.1 7.1 7.1 7.1 7.1	6 6 0 0 0 7.1 7.1 0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	6 6 0 0 7.1 7.1 0 7.1 7.1 7.1 7.1 7.1 7.1 7.1	6 6 0 0 7.1 7.1 0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	6 6 0 0 7.1 7.1 0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 4.5 5.7	0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 4.5 5.7	0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 4.5 5.7	0 0 0 0 0 0 0 0 0 0 0 6 6 0 0 6 6 4.5 5.7	0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 6 0 0 6 6 0 6 4.5 5 7	0 0 0 0 0 0 0 0 0 0 0 0 6 6 0 0 6 6 4.5 5.7


SCHEMATIC DIAGRAM

SCHEMATIC DIAGRAM OF MICROPHONE

EXPLODED VIEW

RADIO SHACK A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102 CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA

BELGIUM

Ú. K.

RYDALMERE. N.S.W. 2116

280 316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE 5140 NANINNE

BILSTON ROAD WEDNESBURY, WEST MIDLANDS WS10 7JN